The Implementation Moonshot Project for Alternative Chemical Testing (IMPACT) toward a Human Exposome Project

Main Article Content

Fenna C. M. Sillé, Francois Busquet, Suzie Fitzpatrick, Kathrin Herrmann, Lisa Leenhouts-Martin, Thomas Luechtefeld, Alexandra Maertens, Gary W. Miller, Lena Smirnova, Katya Tsaioun, Thomas Hartung
[show affiliations]

Abstract

The Human Exposome Project aims to revolutionize our understanding of how environmental exposures affect human health by systematically cataloging and analyzing the myriad exposures individuals encounter throughout their lives. This initiative draws a parallel with the Human Genome Project, expanding the focus from genetic factors to the dynamic and complex nature of environ­mental interactions. The project leverages advanced methodologies such as omics technologies, biomonitoring, microphysiological systems (MPS), and artificial intelligence (AI), forming the foun­dation of exposome intelligence (EI) to integrate and interpret vast datasets. Key objectives include identifying exposure-disease links, prioritizing hazardous chemicals, enhancing public health and regulatory policies, and reducing reliance on animal testing. The Implementation Moonshot Project for Alternative Chemical Testing (IMPACT), spearheaded by the Center for Alternatives to Animal Testing (CAAT), is a new element in this endeavor, driving the creation of a public-private part­nership toward a Human Exposome Project with a stakeholder forum in 2025. Establishing robust infrastructure, fostering interdisciplinary collaborations, and ensuring quality assurance through sys­tematic reviews and evidence-based frameworks are crucial for the project’s success. The expected outcomes promise transformative advancements in precision public health, disease prevention, and a more ethical approach to toxicology. This paper outlines the strategic imperatives, challenges, and opportunities that lie ahead, calling on stakeholders to support and participate in this landmark initiative for a healthier, more sustainable future.


Plain language summary
This paper outlines a proposal for a “Human Exposome Project” to comprehensively study how environmental exposures affect human health throughout our lives. The exposome refers to all the environmental factors we are exposed to, from chemicals to diet to stress. The project aims to use advanced technologies like artificial intelligence, lab-grown mini-organs, and detailed biological measurements to map how different exposures impact our health. This could help identify causes of diseases and guide better prevention strategies. Key goals include finding links between spe­cific exposures and health problems, determining which chemicals are most concerning, improving public health policies, and reducing animal testing. The project requires collaboration between researchers, government agencies, companies, and others. While ambitious, this effort could revo­lutionize our understanding of environmental health risks. The potential benefits for improving health and preventing disease make this an important endeavor to a precise and comprehensive approach to public health and disease prevention.

Article Details

How to Cite
Sillé, F. C. M. (2024) “The Implementation Moonshot Project for Alternative Chemical Testing (IMPACT) toward a Human Exposome Project”, ALTEX - Alternatives to animal experimentation, 41(3), pp. 344–362. doi: 10.14573/altex.2407081.
Section
Food for Thought ...
References

Abdelzaher, H., Tawfik, S. M., Nour, A. et al. (2022). Climate change, human health, and the exposome: Utilizing OMIC technologies to navigate an era of uncertainty. Front Public Health 10, 973000. doi:10.3389/fpubh.2022.973000

Alépée, N., Bahinski, T., Daneshian, M. et al. (2014). State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology – A t4 report. ALTEX 31, 441-477. doi:10.14573/altex.1406111

Ankley, G. T., Bennett, R. S., Erickson, R. J. et al. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29, 730-741. doi:10.1002/etc.34

Bailey, J., Knight, A. and Balcombe, J. (2005). The future of teratology research is in vitro. Biogenic Amines 19, 97-145. doi:10.1163/1569391053722755

Beilmann, M., Boonen, H., Czich, A. et al. (2019). Optimizing drug discovery by investigative toxicology: Current and future trends. ALTEX 36, 3-17. doi:10.14573/altex.1808181

Bouhifd, M., Hogberg, H. T., Kleensang, A. et al. (2014). Mapping the human toxome by systems toxicology. Basic Clin Pharmacol Toxicol 115, 24-31. doi:10.1111/bcpt.12198

Bouhifd, M., Andersen, M. E., Baghdikian, C. et al. (2015). The human toxome project. ALTEX 32, 112-124. doi:10.14573/altex.1502091

de Vries, R. B. M., Angrish, M., Browne, P. et al. (2021). Applying evidence-based methods to the development and use of adverse outcome pathways construct mechanistic frameworks for the development and use of non-animal toxicity tests. ALTEX 38, 336-347. doi:10.14573/altex.2101211

Escher, B. I., Hackermüller, J., Polte, T. et al. (2017). From the exposome to mechanistic understanding of chemical-induced adverse effects. Environ Inter 99, 97-106. doi:10.1016/j.envint.2016.11.029

Farhat, N., Tsaioun, K., Saunders-Hastings, P. et al. (2022). Systematic review in evidence-based risk assessment. ALTEX 39, 463-479. doi:10.14573/altex.2004111

Gao, P. (2021). The exposome in the era of One Health. Environ Sci Technol 55, 2790-2799. doi:10.1021/acs.est.0c07033

Gottmann, E., Kramer, S., Pfahringer, B. et al. (2001). Data quality in predictive toxicology: Reproducibility of rodent carcinogenicity experiments. Environ Health Perspect 109, 509-514. doi:10.1289/ehp.01109509

Gray, G. M., Li, P., Shlyakhter, I. et al. (1995). An empirical examination of factors influencing prediction of carcinogenic hazard across species. Regul Toxicol Pharmacol 22, 283-291. doi:10.1006/rtph.1995.0011

Haddad, N., Andrianou, X. D. and Makris, K. C. (2019). A scoping review on the characteristics of human exposome studies. Curr Pollution Rep 5, 378-393. doi:10.1007/s40726-019-00130-7

Hartung, T. and McBride, M. (2011). Food for thought… on mapping the human toxome. ALTEX 28, 83-93. doi:10.14573/altex.2011.2.083

Hartung, T. (2016). E-cigarettes and the need and opportunities for alternatives to animal testing. ALTEX 33, 211-224. doi:10.14573/altex.1606291

Hartung, T., FitzGerald, R., Jennings, P. et al. (2017). Systems toxicology – Real world applications and opportunities. Chem Res Toxicol 30, 870-882. doi:10.1021/acs.chemrestox.7b00003

Hartung, T. (2018). Rebooting the generally recognized as safe (GRAS) approach for food additive safety in the US. ALTEX 35, 3-25. doi:10.14573/altex.1712181

Hartung, T. (2023a). A call for a human exposome project. ALTEX 40, 4-33. doi:10.14573/altex.2301061

Hartung, T. (2023b). ToxAIcology – The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. ALTEX 40, 559-570. doi:10.14573/altex.2309191

Hartung, T. (2023c). AI as the new frontier in chemical risk assessment. Front Artif Intell 4, 559-570. doi:10.3389/frai.2023.1269932

Hartung, T., Smirnova, L., Morales Pantoja, I. E. et al. (2023). The Baltimore declaration toward the exploration of organoid intelligence. Front Sci 1, 1017235. doi:10.3389/fsci.2023.1017235

Hartung, T. and Tsaioun, K. (revised). Evidence-based approaches in toxicology: Their origins, challenges, and future directions. Evid Based Toxicol.

Hoffmann, S., Hartung, T. and Stephens, M. (2016). Evidence-based toxicology. Adv Exp Med Biol 856, 231-241. doi:10.1007/978-3-319-33826-2_9

Hoffmann, S., Aiassa, E., Angrish, M. et al. (2022a). Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks. ALTEX 39, 499-518. doi:10.14573/altex.2202141

Hoffmann, S., Whaley, P. and Tsaioun, K. (2022b). How evidence-based methodologies can help identify and reduce uncertainty in chemical risk assessment. ALTEX 39, 175‐182. doi:10.14573/altex.2201131

Hurtt, M. E., Cappon, G. D. and Browning, A. (2003). Proposal for a tiered approach to developmental toxicity testing for veterinary pharmaceutical products for food-producing animals. Food Chem Toxicol 41, 611-619. doi:10.1016/s0278-6915(02)00326-5

Karlsson, O., Rocklöv, J., Lehoux, A. P. et al. (2021). The human exposome and health in the Anthropocene. Inter J Epidem 50, 378-389, doi:10.1093/ije/dyaa231

Kleinstreuer, N. and Hartung, T. (2024). Artificial intelligence (AI) – It’s the end of the tox as we know it (and I feel fine) – AI for predictive toxicology. Arch Toxicol 98, 735-754. doi:10.1007/s00204-023-03666-2

Kleensang, A., Maertens, A., Rosenberg, M. et al. (2014). Pathways of toxicity. ALTEX 31, 53-61. doi:10.14573/altex.1309261

Knight, J., Hartung, T. and Rovida, C. (2023). 4.2 million and counting… the animal toll for REACH systemic toxicity studies. ALTEX 40, 389-407. doi:10.14573/altex.2303201

Krewski, D., Andersen, M., Tyshenko, M. G. et al. (2020). Toxicity testing in the 21st century: Progress in the past decade and future perspectives. Arch Toxicol 94, 1-58. doi:10.1007/s00204-019-02613-4

Krewski, D., Saunders-Hastings, P., Baan, R. et al. (2022). Development of an evidence-based risk assessment framework. ALTEX 39, 667-693. doi:10.14573/altex.2004041

Leist, M., Ghallab, A., Graepel, R. et al. (2017). Adverse outcome pathways: Opportunities, limitations and open questions. Arch Toxicol 31, 221-229. doi:10.1007/s00204-017-2045-3

Logan, A. C., Prescott, S. L., Haahtela, T. et al. (2018). The importance of the exposome and allostatic load in the planetary health paradigm. J Physiol Anthropol 37, 15. doi:10.1186/s40101-018-0176-8

Luechtefeld, T., Marsh, D., Rowlands, C. et al. (2018). Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci 165, 198-212. doi:10.1093/toxsci/kfy152

Maertens, A., Golden, E., Luechtefeld, T. H. et al. (2022). Probabilistic Risk Assessment – the Keystone for the Future of Toxicology. ALTEX 39, 3-29. doi:10.14573/altex.2201081

Maertens, A., Luechtefeld, T. and Hartung, T. (2024a). Alternative methods go green! Green toxicology as a sustainable approach for assessing chemical safety and designing safer chemicals. ALTEX 41, 3-19. doi:10.14573/altex.2312291

Maertens, A., Antignac, E., Benfenati, E. et al. (2024b). The probable future of toxicology - probabilistic risk assessment. ALTEX 41, 273–281. doi: 10.14573/altex.2310301.

Marx, U., Andersson, T. B., Bahinski, A. et al. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing using animals. ALTEX 33, 272-321. doi:10.14573/altex.1603161

Marx, U., Akabane, T., Andersson, T. B. et al. (2020). Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX 37, 364-394. doi:10.14573/altex.2001241

Meigs, L., Smirnova, L., Rovida, C. et al. (2018). Animal testing and its alternatives – The most important omics is economics. ALTEX 35, 275-305. doi:10.14573/altex.1807041

Menon, J. M. L., Struijs, F. and Whaley, P. (2022). The methodological rigour of systematic reviews in environmental health. Crit Rev Toxicol 52, 167-187. doi:10.1080/10408444.2022.2082917

Miller, G. W. (2013). The Exposome: A Primer. Waltham, MA: Academic Press, Elsevier, Inc.

Miller, G. W. and Jones, D. P. (2014). The nature of nurture: Refining the definition of the exposome. Toxicol Sci 137, 1-2. doi:10.1093/toxsci/kft251

Monticello, T. M., Jones, T. W., Dambach, D. M. et al. (2017). Current nonclinical testing paradigm enables safe entry to first-In-human clinical trials: The IQ consortium nonclinical to clinical translational database. Toxicol Appl Pharmacol 334, 100-109. doi:10.1016/j.taap.2017.09.006

Morales Pantoja, I. E., Smirnova, L., Muotri, A. R. et al. (2023). First organoid intelligence (OI) workshop to form an OI community. Front Artif Intell 6, 1116870. doi:10.3389/frai.2023.1116870

Niedzwiecki, M. M., Walker, D. I., Vermeulen, R. et al. (2019). The exposome: Molecules to populations. Annu Rev Pharmacol Toxicol 59, 107-127. doi:10.1146/annurev-pharmtox-010818-021315

NRC – National Research Council (2007). Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC, USA: The National Academies Press.

Olson, H., Betton, G., Robinson, D. et al. (2000). Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32, 56-67. doi:10.1006/rtph.2000.1399

Pamies, D., Barreras, P., Block, K. et al. (2017a). A human brain microphysiological system derived from iPSC to study central nervous system toxicity and disease. ALTEX 34, 362-376. doi:10.14573/altex.1609122

Pamies, D., Bal-Price, A. and Simeonov, A. (2017b). Good cell culture practice for stem cells and stem-cell-derived models. ALTEX 34, 95-132. doi:10.14573/altex.1607121

Pamies, D., Bal-Price, A., Chesné, C. et al. (2018). Advanced good cell culture practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX 35, 353-378. doi:10.14573/altex.1710081

Pamies, D., Leist, M., Coecke, S. et al. (2020). Good cell and tissue culture practice 2.0 (GCCP 2.0) – Draft for stakeholder discussion and call for action. ALTEX 37, 490-492. doi:10.14573/altex.2007091

Pamies, D., Leist, M., Coecke, S. et al. (2022). Guidance document on good cell and tissue culture practice 2.0 (GCCP 2.0). ALTEX 39, 30-70. doi:10.14573/altex.2111011

Ramos, R. G. and Olden, K. (2008). Gene-environment interactions in the development of complex disease phenotypes. Int J Environ Res Public Health 5, 4-11. doi:10.3390/ijerph5010004

Roth, A. and MPS-WS Berlin 2019 (2021). Human microphysiological systems for drug development. Science 373, 1304-1306. doi:10.1126/science.abc3734

Rovida, C. and Hartung, T. (2009). Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements. ALTEX 26, 187-208. doi:10.14573/altex.2009.3.187

Rovida, C., Asakura, S., Daneshian, M. et al. (2015). Toxicity testing in the 21st century beyond environmental chemicals. ALTEX 32, 171-181. doi:10.14573/altex.1506201

Rovida, C., Busquet, F., Leist, M. et al. (2023). REACH out-numbered! The future of REACH and animal numbers. ALTEX 40, 367-388. doi:10.14573/altex.2307121

Sarigiannis, D. A., Hartung, T. and Karakitsios, S. P. (2021). The exposome – A new paradigm for non-animal toxicology and integrated risk assessment. In A. M. Tsatsakis, Toxicological Risk Assessment and Multi-System Health Impacts from Exposure (23-30). London, UK: Elsevier, Academic Press.

Sauer, J. M., Hartung, T., Leist, M. et al. (2015). Systems toxicology: The future of risk assessment. Inter J Toxicol 34, 346-348. doi:10.1177/1091581815576551

Sillé, F. C. M., Karakitsios, S., Kleensang, A. et al. (2020). The exposome – A new approach for risk assessment. ALTEX 37, 3-23. doi:10.14573/altex.2001051

Sillé, F. C. M., McCormack, M. and Hartung, T. (2022). The exposome applied: A step toward defining the totality of environmental exposures in asthma. Am J Respir Crit Care Med 206, 1187-1188. doi:10.1164/rccm.202207-1430ED

Sillé, F. C. M. and Hartung, T. (2024). Metabolomics in preclinical drug safety assessment: Current status and future trends. Metabolites 14, 98. doi:10.3390/metabo14020098

Smirnova, L., Kleinstreuer, N., Corvi, R. et al. (2018). 3S – Systematic, systemic, and systems biology and toxicology. ALTEX 35, 139-162. doi:10.14573/altex.1804051

Smirnova, L., Morales Pantoja, I. E. and Hartung, T. (2023). Organoid intelligence (OI) – The ultimate functionality of a brain microphysiological system. ALTEX 40, 191-203. doi:10.14573/altex.2303261

Smirnova, L. and Hartung, T. (2024). The promise and potential of brain organoids. Adv Healthc Mater, 2302745. doi:10.1002/adhm.202302745

von Aulock, S., Busquet, F., Locke, P. et al. (2022). Engagement of scientists with the public and policymakers to promote alternative methods. ALTEX 39, 543-559. doi:10.14573/altex.2209261

Wang, B. and Gray, G. (2014). Concordance of noncarcinogenic endpoints in rodent chemical bioassays. Risk Anal 35, 1154-1166. doi:10.1111/risa.12314

Wang, Z., Walker, G. W., Muir, D. C. G. et al. (2020). Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol 54, 2575-2584. doi:10.1021/acs.est.9b06379

Whaley, P., Piggott, T., Morgan, R. L. et al. (2022). Biological plausibility in environmental health systematic reviews: A GRADE concept paper. Environ Inter 162, 107109. doi:10.1016/j.envint.2022.107109

Wild, C. P. (2005). Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 14, 1847-1850. doi:10.1158/1055-9965

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>