Opportunities and challenges for human microphysiological systems in drug development
Main Article Content
Abstract
Microphysiological systems (MPS) are complex in vitro tools that incorporate cells derived from various healthy or disease-state human or animal tissues and organs. While MPS have limitations, including a lack of globally harmonized guidelines for standardization, they have already proven impactful in certain areas of drug development. Further research and regulatory acceptance of MPS will contribute to making them even more effective tools in the future. This review explores the potential applications of human liver, gut, lung, and cardiac MPS in drug development, focusing on disease modeling, safety assessment, and pharmacokinetic studies. Various technical parameters and relevant endpoints for system assessment are discussed alongside challenges such as cell sourcing, reproducibility, and the integration of multiple tissues or organs. The importance of collaborative efforts between academia, industry, and regulatory agencies to develop standardized protocols and validation criteria is emphasized. With ongoing advancements and cooperative initiatives, MPS are poised to play a significant role in enhancing the predictivity and reliability of nonclinical testing, thereby transforming drug development and regulatory processes.
Plain language summary
Microphysiological systems (MPS) are advanced tools that simulate human organs and tissues on a miniature scale, offering a more reliable way to test new drugs than traditional cell cultures. This review explores the potential applications of liver, gut, lung, and cardiac MPS in drug development. The challenges with MPS, such as the lack of uniform standards, finding reliable sources of cells, ensuring consistent results across different experiments, and combining various types of tissues and organs in one system, are discussed. Collaboration among researchers, pharmaceutical companies, and regulators is emphasized for developing standardized protocols and improving MPS. Addressing the challenges through collaborative efforts will enhance the effectiveness of MPS, making them valuable tools for better drug testing and development.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Abi-Gerges, N., Indersmitten, T., Truong, K., et al. (2020). Multiparametric mechanistic profiling of inotropic drugs in adult human primary cardiomyocytes. Sci Rep 10, 7692. doi:10.1038/s41598-020-64657-2
Adriaanse, M. P., Tack, G. J., Passos, V. L. et al. (2013). Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment Pharmacol Ther 37, 482-490. doi:10.1111/apt.12194
Afonso, M. B., Marques, V., van Mil, S. W. C. et al. (2024). Human liver organoids: From generation to applications. Hepatology 79, 1432-1451. doi:10.1097/Hep.0000000000000343
Ainslie, G. R., Davis, M., Ewart, L. et al. (2019). Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective. Lab Chip 19, 3152-3161. doi:10.1039/c9lc00492k
Alqahtani, M. S., Kazi, M., Alsenaidy, M. A. et al. (2021). Advances in oral drug delivery. Front Pharmacol 12, 618411. doi:10.3389/fphar.2021.618411
Amirabadi, H. E, Donkers, J. M., Wierenga, E. et al. (2022). Intestinal explant barrier chip: long-term intestinal absorption screening in a novel microphysiological system using tissue explants. Lab Chip 22, 326-342. doi:10.1039/d1lc00669j
Andrade, E. L., Bento, A. F., Cavalli, J. et al. (2016). Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies. Braz J Med Biol Res 49, e5646. doi:10.1590/1414-431X20165646
Antfolk, M. and Jensen, K. B. (2020). A bioengineering perspective on modelling the intestinal epithelial physiology in vitro. Nat Commun 11, 6244. doi:10.1038/s41467-020-20052-z
Antoine, D. J., Dear, J. W., Lewis, P. S. et al. (2013). Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology 58, 777-787. doi:10.1002/hep.26294
Arakawa, H., Nakazono, Y., Matsuoka, N. et al. (2023). Induction of open-form bile canaliculus formation by hepatocytes for evaluation of biliary drug excretion. Communications Biology 6, 866. doi:10.1038/s42003-023-05216-z
Arefin, A., Mendoza, M., Dame, K., Garcia, M. I. et al. (2023). Reproducibility of drug-induced effects on the contractility of an engineered heart tissue derived from human pluripotent stem cells. Front Pharmacol 14, 1212092. doi:10.3389/fphar.2023.1212092
Arhontoulis, D. C., Kerr, C. M., Richards, D. et al. (2022). Human cardiac organoids to model COVID-19 cytokine storm induced cardiac injuries. J Tissue Eng Regen Med 16, 799-811. doi:10.1002/term.3327
Ashammakhi, N., Nasiri, R., Barros, N. R. et al. (2020). Gut-on-a-chip: Current progress and future opportunities. Biomaterials 255, 120196. do: 10.1016/j.biomaterials.2020.120196
Aubrecht, J. and Schomaker, S. (2013). Serum glutamate dehydrogenase as a potential biomarker of mitochondrial dysfunction. Toxicol Sci 134, 223-223. doi:10.1093/toxsci/kft088
Avila, A. M., Bebenek, I., Bonzo, J. A., et al. (2020). An FDA/CDER perspective on nonclinical testing strategies: Classical toxicology approaches and new approach methodologies (NAMs). Regul Toxicol Pharmacol 114, 104662. doi:10.1016/j.yrtph.2020.104662
Avila, A. M., Bebenek, I., Mendrick, D. L. et al. (2023). Gaps and challenges in nonclinical assessments of pharmaceuticals: An FDA/CDER perspective on considerations for development of new approach methodologies. Regul Toxicol Pharmacol 139, 105345. doi:10.1016/j.yrtph.2023.105345
Bai, B. J., Yang, X. L., Li, Y. Z. et al. (2023). Deep learning-enabled virtual histological staining of biological samples. Light Sci Appl 12, 57. doi:10.1038/s41377-023-01104-7
Bai, H., Si, L., Jiang, A. et al. (2022). Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat Commun 13, 1928. doi:10.1038/s41467-022-29562-4
Baker, T. K., van Vleet, T. R., Mahalingaiah, P. K. et al. (2023). The current status and use of microphysiological systems by the pharmaceutical industry: the IQ microphysiological systems affiliate survey and commentary. Drug Metab Dispos 52, 198-209. doi:10.1124/dmd.123.001510
Balijepalli, A. and Sivaramakrishan, V. (2017). Organs-on-chips: research and commercial perspectives. Drug Discov Today, 22, 397-403. doi:10.1016/j.drudis.2016.11.009
Baran, S. W., Brown, P. C., Baudy, A. R., et al. (2022). Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate). ALTEX 39, 297-314. doi:10.14573/altex.2112203
Barndt, R. J., Ma, N., Tang, Y. et al. (2021). Modeling of dilated cardiomyopathy by establishment of isogenic human iPSC lines carrying phospholamban C25T (R9C) mutation (UPITTi002-A-1) using CRISPR/Cas9 editing. Stem Cell Res 56, 102544. doi:10.1016/j.scr.2021.102544
Barnes, P. J., Bonini, S., Seeger, W. et al. (2015). Barriers to new drug development in respiratory disease. Eur Respir J 45, 1197-1207. doi:10.1183/09031936.00007915
Baudy, A. R., Otieno, M. A., Hewitt, P. et al. (2020). Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. Lab Chip 20, 215-225. doi:10.1039/c9lc00768g
Beaurivage, C., Kanapeckaite, A., Loomans, C. et al. (2020). Development of a human primary gut-on-a-chip to model inflammatory processes. Sci Rep 10, 21475. doi:10.1038/s41598-020-78359-2
Beaurivage, C., Naumovska, E., Chang, Y. X. et al. (2019). Development of a gut-on-a-chip model for high throughput disease modeling and drug discovery. Int J of Mol Sci 20, 5661. doi:10.3390/ijms20225661
Bedard, P., Gauvin, S., Ferland, K. et al. (2020). Innovative human three-dimensional tissue-engineered models as an alternative to animal testing. Bioengineering (Basel) 7, 115. doi:10.3390/bioengineering7030115
Bein, A., Shin, W., Jalili-Firoozinezhad, S. et al. (2018). Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol Hepatol 5, 659-668. doi:10.1016/j.jcmgh.2017.12.010
Bell, C. C., Dankers, A. C. A., Lauschke, V. M., et al. (2018). Comparison of hepatic 2D sandwich cultures and 3D spheroids for long-term toxicity applications: a multicenter study. Toxicol Sci 162, 655-666. doi:10.1093/toxsci/kfx289
Ben-Moshe, S., Shapira, Y., Moor, A. E. et al. (2019). Spatial sorting enables comprehensive characterization of liver zonation. Nat Metab 1, 899-911. doi:10.1038/s42255-019-0109-9
Benam, K. H., Villenave, R., Lucchesi, C. et al. (2016a). Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13, 151-157. doi:10.1038/nmeth.3697
Benam, K. H., Novak, R., Nawroth, J. et al. (2016b). Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Systems 3, 454-466.e454. doi:10.1016/j.cels.2016.10.003
Bennet, T. J., Randhawa, A., Hua, J. et al. (2021). Airway-on-a-chip: designs and applications for lung repair and disease. Cells 10, 1602. doi:10.3390/cells10071602
Bircsak, K. M., DeBiasio, R., Miedel, M. et al. (2021). A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate(R). Toxicology 450, 152667. doi:10.1016/j.tox.2020.152667
Blinova, K., Dang, Q., Millard, D., et al. (2018). International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep 24, 3582-3592. doi:10.1016/j.celrep.2018.08.079
Blinova, K., Schocken, D., Patel, D. et al. (2019). Clinical trial in a dish: personalized stem cell-derived cardiomyocyte assay compared with clinical trial results for two QT-prolonging drugs. Clin Transl Sci 12, 687-697. doi:10.1111/cts.12674
Blumenrath, S. H., Lee, B. Y., Low, L. et al. (2020). Tackling rare diseases: Clinical trials on chips. Exp Biol Med (Maywood) 245, 1155-1162. doi:10.1177/1535370220924743
Bonanini, F., Dinkelberg, R., Torregrosa, M. C. et al. (2024). A microvascularized in vitro liver model for disease modeling and drug discovery. Biofabrication 17. doi:10.1088/1758-5090/ad818a
Boonekamp, K. E., Dayton, T. L. and Clevers, H. (2020). Intestinal organoids as tools for enriching and studying specific and rare cell types: advances and future directions. J Mol Cell Biol 12, 562-568. doi:10.1093/jmcb/mjaa034
Borghardt, J. M., Kloft, C. and Sharma, A. (2018). Inhaled therapy in respiratory disease: the complex interplay of pulmonary kinetic processes. Can Respir J 2018, 2732017. doi:10.1155/2018/2732017
Boyer, J. L. (2013). Bile formation and secretion. Compr Physiol 3, 1035-1078. doi:10.1002/cphy.c120027
Brodehl, A., Pour Hakimi, S. A., Stanasiuk, C. et al. (2019). Restrictive cardiomyopathy is caused by a novel homozygous desmin (DES) mutation p.Y122H leading to a severe filament assembly defect. Genes (Basel) 10, 918. doi:10.3390/genes10110918
Brovold, M., Keller, D., Devarasetty, M. et al. (2021). Biofabricated 3D in vitro model of fibrosis-induced abnormal hepatoblast/biliary progenitors' expansion of the developing liver. Bioeng Transl Med 6, e10207. doi:10.1002/btm2.10207
Browne, S., Gill, E. L., Schultheiss, P. et al. (2021). Stem cell-based vascularization of microphysiological systems. Stem Cell Reports 16, 2058-2075. doi:10.1016/j.stemcr.2021.03.015
Buderus, S., Boone, J. H. and Lentze, M. J. (2015). Fecal lactoferrin: reliable biomarker for intestinal inflammation in pediatric IBD. Gastroenterol Res Pract 2015, 578527. doi:10.1155/2015/578527
Bushby, K., Finkel, R., Birnkrant, D. J. et al. (2010). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9, 77-93. doi:10.1016/S1474-4422(09)70271-6
Caetano-Pinto, P. and Stahl, S. H. (2018). Perspective on the application of microphysiological systems to drug transporter studies. Drug Metab Dispos 46, 1647-1657. doi:10.1124/dmd.118.082750
Carvalho, M. R., Barata, D., Teixeira, L. M. et al. (2019). Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. Sci Adv 5, eaaw1317. doi:10.1126/sciadv.aaw1317
Carvalho, M. R., Yan, L. P., Li, B. et al. (2023). Gastrointestinal organs and organoids-on-a-chip: advances and translation into the clinics. Biofabrication 15. doi:10.1088/1758-5090/acf8fb
Chang, Y. S., Edeen, K., Lu, X. J. et al. (2006). Keratinocyte growth factor induces lipogenesis in alveolar type II cells through a sterol regulatory element binding protein-1c-dependent pathway. Am J Respir Cell Mol Biol 35, 268-274. doi:10.1165/rcmb.2006-0037OC
Charrez, B., Charwat, V., Siemons, B. et al. (2021). In vitro safety "clinical trial" of the cardiac liability of drug polytherapy. Clin Transl Sci 14, 1155-1165. doi:10.1111/cts.13038
Chen, M. B., Srigunapalan, S., Wheeler, A. R. et al. (2013). A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions. Lab Chip 13, 2591-2598. doi:10.1039/c3lc00051f
Chen, W., Wang, J. B., Abnet, C. C. et al. (2015). Association between C-reactive protein, incident liver cancer, and chronic liver disease mortality in the linxian nutrition intervention trials: a nested case-control study. Cancer Epidemiol Biomarkers Prev 24, 386-392. doi:10.1158/1055-9965.Epi-14-1038
Chhabra, R. S. (1979). Intestinal absorption and metabolism of xenobiotics. Environ Health Perspect 33, 61-69. doi:10.1289/ehp.793361
Chunduri, V., Maddi, M. (2023). Role of in vitro two-dimensional (2D) and three-dimensional (3D) cell culture systems for ADME-Tox screening in drug discovery and development: a comprehensive review. ADMET DMPK 11, 1-32. doi:10.5599/admet.1513
Church, R. J. and Watkins, P. B. (2017). The transformation in biomarker detection and management of drug-induced liver injury. Liver Int 37, 1582-1590. doi:10.1111/liv.13441
Clevers, H. (2013). The intestinal crypt, a prototype stem cell compartment. Cell 154, 274-284. doi:10.1016/j.cell.2013.07.004
Cong Y., Han, X., Wang, Y. et al. (2020). Drug Toxicity evaluation based on organ-on-a-chip technology: a review. Micromachines 11, 381. doi:10.3390/mi11040381
Cooper, B. L., Salameh, S. and Posnack, N. G. (2024). Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 198, 273-287. doi:10.1093/toxsci/kfae015
Cox, B., Barton, P., Class, R., et al. (2022). Setup of human liver-chips integrating 3D models, microwells and a standardized microfluidic platform as proof-of-concept study to support drug evaluation. Biomater Biosyst 7, 100054. doi:10.1016/j.bbiosy.2022.100054
Cox, C. R., Lynch, S., Goldring, C. et al. (2020). Current perspective: 3D spheroid models utilizing human-based cells for investigating metabolism-dependent drug-induced liver injury. Front Med Technol 2, 611913. doi:10.3389/fmedt.2020.611913
Crenn, P., Messing, B. and Cynober, L. (2008). Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr 27, 328-339. doi:10.1016/j.clnu.2008.02.005
Crenn, P., Vahedi, K., Lavergne-Slove, A. et al. (2003). Plasma citrulline: A marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 124, 1210-1219. doi:10.1016/s0016-5085(03)00170-7
Cunningham, R. P. and Porat-Shliom, N. (2021). Liver zonation - revisiting old questions with new technologies. Frontiers in Physiology 12, 732929. doi:10.3389/fphys.2021.732929
D'Agostino, L., Daniele, B., Pignata, S. et al. (1988). Postheparin plasma diamine oxidase in subjects with small bowel disease. Diagnostic efficiency of a simplified test. Digestion 41, 46-54. doi:10.1159/000199731
Dalsbecker, P., Adiels, C.B. and Goksor, M. (2022). Liver-on-a-chip devices: the pros and cons of complexity. Am J Physiol Gastrointest Liver Physiol 323, G188-G204. doi:10.1152/ajpgi.00346.2021
Dame, K. and Ribeiro, A. J. S. (2021). Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects. Exp Biol Med 246, 317-331. doi:10.1177/1535370220959598
Deguchi, S. and Takayama, K. (2022). State-of-the-art liver disease research using liver-on-a-chip. Inflamm Regen 42, 62. doi:10.1186/s41232-022-00248-0
Deng, J., Wei, W., Chen, Z. et al. (2019). Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: a review. Micromachines (Basel) 10, 676. doi:10.3390/mi10100676
Di, L. (2019). The impact of carboxylesterases in drug metabolism and pharmacokinetics. Curr Drug Metab 20, 91-102. doi:10.2174/1389200219666180821094502
Di, L. and Kerns, E. H. (2009). Stability challenges in drug discovery. Chem Biodivers 6, 1875-1886. doi:10.1002/cbdv.200900061
Donkers, J. M., van der Vaart, J. I. and van de Steeg, E. (2023). Gut-on-a-chip research for drug development: implications of chip design on preclinical oral bioavailability or intestinal disease studies. Biomimetics (Basel), 8, 226. doi:10.3390/biomimetics8020226
Dou, W. K., Malhi, M., Zhao, Q. L. et al. (2022). Microengineered platforms for characterizing the contractile function of in vitro cardiac models. Microsyt Nanoeng 8, 26. doi:10.1038/s41378-021-00344-0
Du, Y., Khandekar, G., Llewellyn, J. et al. (2020). A bile duct-on-a-chip with organ-level functions. Hepatology 71, 1350-1363. doi:10.1002/hep.30918
Du, Y., Li, N., Yang, H. et al. (2017). Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab Chip 17, 782-794. doi:10.1039/c6lc01374k
Edington, C. D., Chen, W. L. K., Geishecker, E. et al. (2018). Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep 8, 4530. doi:10.1038/s41598-018-22749-0
Ehrlich, A., Duche, D., Ouedraogo, G. and Nahmias, Y. (2019). Challenges and opportunities in the design of liver-on-chip microdevices. Annu Rev Biomed Eng 21, 219-239. doi:10.1146/annurev-bioeng-060418-052305
Eichenbaum, G., Yang, K., Gebremichael, Y., et al. (2020). Application of the DILIsym(R) Quantitative Systems Toxicology drug-induced liver injury model to evaluate the carcinogenic hazard potential of acetaminophen. Regul Toxicol Pharmacol 118, 104788. doi:10.1016/j.yrtph.2020.104788
Eisner, D. A., Caldwell, J. L., Kistamas, K. et al. (2017). Calcium and excitation-contraction coupling in the heart. Circ Res 121, 181-195. doi:10.1161/CIRCRESAHA.117.310230
Ekert, J. E., Deakyne, J., Pribul-Allen, P. et al. (2020). Recommended guidelines for developing, qualifying, and implementing complex in vitro models (CIVMs) for drug discovery. SLAS Discov 25, 1174-1190. doi:10.1177/2472555220923332
Enlo-Scott, Z., Backstrom, E., Mudway et al. (2021). Drug metabolism in the lungs: opportunities for optimising inhaled medicines. Expert Opin Drug Metab Toxicol 17, 611-625. doi:10.1080/17425255.2021.1908262
Esch, M. B., Mahler, G. J., Stokor, T. et al. (2014). Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14, 3081-3092. doi:10.1039/c4lc00371c
Ewart, L., Apostolou, A., Briggs, S. A. et al. (2022). Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology. Commun Med (Lond) 2, 154. doi:10.1038/s43856-022-00209-1
Ewart, L. and Roth, A. (2021). Opportunities and challenges with microphysiological systems: a pharma end-user perspective. Nat Rev Drug Discov 20, 327-328. doi:10.1038/d41573-020-00030-2
Fabre, K., Berridge, B., Proctor, W. R. et al. (2020). Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab Chip 20, 1049-1057. doi:10.1039/c9lc01168d
Fahrner, R., Groger, M., Settmacher, U. et al. (2023). Functional integration of natural killer cells in a microfluidically perfused liver on-a-chip model. BMC Res Notes 16, 285. doi:10.1186/s13104-023-06575-w
Fang, G., Chen, Y. C., Lu, H. et al. (2023). Advances in spheroids and organoids on a chip. Adv Funct Mater 33, 2215043. doi:10.1002/adfm.202215043
Feaster, T. K., Feric, N., Pallotta, I. et al. (2022). Acute effects of cardiac contractility modulation stimulation in conventional 2D and 3D human induced pluripotent stem cell-derived cardiomyocyte models. Front Physiol 13, 1023563. doi:10.3389/fphys.2022.1023563
Fedi, A., Vitale, C., Ponschin, G. et al. (2021). In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. J Control Release 335, 247-268. doi:10.1016/j.jconrel.2021.05.028
Feldstein, A. E., Wieckowska, A., Lopez, A. R. et al. (2009). Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology 50, 1072-1078. doi:10.1002/hep.23050
Ferdowsian, H. R. and Beck, N. (2011). Ethical and scientific considerations regarding animal testing and research. PLoS One 6, e24059. doi:10.1371/journal.pone.0024059
Ferreira, G. S., Veening-Griffioen, D. H., Boon, W. P. C. et al. (2019). A standardised framework to identify optimal animal models for efficacy assessment in drug development. Plos One 14, e0218014. doi:10.1371/journal.pone.0218014
Fonoudi, H., Lyra-Leite, D. M., Javed, H. A. et al. (2020). Generating a cost-effective, weekend-free chemically defined human induced pluripotent stem cell (hiPSC) culture medium. Curr Protoc Stem Cell Biol 53, e110. doi:10.1002/cpsc.110
Fowler, S., Chen, W. L. K., Duignan, D. B. et al. (2020). Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization. Lab Chip 20, 446-467. doi:10.1039/c9lc00857h
Fragkos, K. C. and Forbes, A. (2018). Citrulline as a marker of intestinal function and absorption in clinical settings: A systematic review and meta-analysis. United European Gastroenterol J 6, 181-191. doi:10.1177/2050640617737632
Francis, I., Shrestha, J., Paudel, K. R. et al. (2022). Recent advances in lung-on-a-chip models. Drug Discovery Today 27, 2593-2602. doi:10.1016/j.drudis.2022.06.004
Freag, M. S., Namgung, B., Reyna Fernandez, M. E. et al. (2021). Human nonalcoholic steatohepatitis on a chip. Hepatol Commun 5, 217-233. doi:10.1002/hep4.1647
Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. et al. (2018). Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24, 908-922. doi:10.1038/s41591-018-0104-9
Fu, S., Wu, D., Jiang, W. et al. (2019). Molecular biomarkers in drug-induced liver injury: challenges and future perspectives. Front Pharmacol 10, 1667. doi:10.3389/fphar.2019.01667
Fukudome, I., Kobayashi, M., Dabanaka, K. et al. (2014). Diamine oxidase as a marker of intestinal mucosal injury and the effect of soluble dietary fiber on gastrointestinal tract toxicity after intravenous 5-fluorouracil treatment in rats. Med Mol Morphol, 47, 100-107. doi:10.1007/s00795-013-0055-7
Fullenkamp, D. E., Willis, A. B., Curtin, J. L. et al. (2024). Physiological stress improves stem cell modeling of dystrophic cardiomyopathy. Dis Model Mech 17. doi:10.1242/dmm.050487
Gaffar, S. and Aathirah, A. S. (2023). Fatty-acid-binding proteins: from lipid transporters to disease biomarkers. Biomolecules 13, 1753. doi:10.3390/biom13121753
Gall, L., Jardi, F., Lammens, L. et al. (2023). A dynamic model of the intestinal epithelium integrates multiple sources of preclinical data and enables clinical translation of drug-induced toxicity. CPT Pharmacometrics Syst Pharmacol 12, 1511-1528. doi:10.1002/psp4.13029
Gao, G., Park, J. Y., Kim, B. S. et al. (2018). Coaxial cell printing of freestanding, perfusable, and functional in vitro vascular models for recapitulation of native vascular endothelium pathophysiology. Adv Healthc Mater 7, e1801102. doi:10.1002/adhm.201801102
Gao, L., Kupfer, M. E., Jung, J. P. et al. (2017). Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ Res 120, 1318-1325. doi:10.1161/CIRCRESAHA.116.310277
Garcia-Gutierrez, E. and Cotter, P. D. (2022). Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit Rev Microbiol 48, 463-488. doi:10.1080/1040841X.2021.1979933
Gardiner, B., Dougherty, J. A., Ponnalagu, D. et al. (2020). Measurement of oxidative stress markers in vitro using commercially available kits. In L. J. Berliner & N. L. Parinandi (Eds.), Measuring Oxidants and Oxidative Stress in Biological Systems (pp. 39-60). doi:10.1007/978-3-030-47318-1_4
Garg, P., Oikonomopoulos, A., Chen, H. et al. (2018). Genome editing of induced pluripotent stem cells to decipher cardiac channelopathy variant. J Am Coll Cardiol 72, 62-75. doi:10.1016/j.jacc.2018.04.041
Giannini, E. G., Testa, R. and Savarino, V. (2005). Liver enzyme alteration: a guide for clinicians. CMAJ 172, 367-379. doi:10.1503/cmaj.1040752
Gissen, P. and Arias, I. M. (2015). Structural and functional hepatocyte polarity and liver disease. J Hepatol 63, 1023-1037. doi:10.1016/j.jhep.2015.06.015
Godier-Furnemont, A. F. G., Tiburcy, M., Wagner, E. et al. (2015). Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials 60, 82-91. doi:10.1016/j.biomaterials.2015.03.055
Gough, A., Soto-Gutierrez, A., Vernetti, L. et al. (2021). Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 18, 252-268. doi:10.1038/s41575-020-00386-1
Graham, M. L. and Prescott, M. J. (2015). The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease. Eur J of Pharmacol 15, 19-29. doi:10.1016/j.ejphar.2015.03.040
Greenhalgh, K., Ramiro-Garcia, J., Heinken, A. et al. (2019). Integrated and modeling delineates the molecular effects of a synbiotic regimen on colorectal-cancer-derived cells. Cell Reports 27, 1621-1632. doi:10.1016/j.celrep.2019.04.001
Gronbaek, H., Vestergaard, E. M., Hey, H. et al. (2006). Serum trefoil factors in patients with inflammatory bowel disease. Digestion 74, 33-39. doi:10.1159/000096591
Guo, Y., Chen, X., Gong, P. et al. (2023). The gut-organ-axis concept: advances the application of gut-on-chip technology. Int J Mol Sci 24, 4089. doi:10.3390/ijms24044089
Guo, Y., Chu, X., Parrott, N. J. et al. (2018a). Advancing Predictions of tissue and intracellular drug concentrations using in vitro, imaging and physiologically based pharmacokinetic modeling approaches. Clin Pharmacol Ther 104, 865-889. doi:10.1002/cpt.1183
Guo, Y., Li, Z., Su, W., Wang, L., Zhu, Y., & Qin, J. (2018b). A biomimetic human gut-on-a-chip for modeling drug metabolism in intestine. Artif Organs 42, 1196-1205. doi:10.1111/aor.13163
Gupta, P., Garcia, E., Sarkar, A. et al. (2019). Nanoparticle based treatment for cardiovascular diseases. Cardiovasc Hematol Disord Drug Targets 19, 33-44. doi:10.2174/1871529X18666180508113253
Gurvinder Kaur, J. M. D. (2012). Cell lines: valuable tools or useless artifacts. Spermatogenesis 2, 1-5. doi:10.4161/spmg.19885
Hachey, S. J., Movsesyan, S., Nguyen, Q. H. et al. (2021). An in vitro vascularized micro-tumor model of human colorectal cancer recapitulates in vivo responses to standard-of-care therapy. Lab Chip 21, 1333-1351. doi:10.1039/d0lc01216e
Haddrick, M. and Simpson, P. B. (2019). Organ-on-a-chip technology: turning its potential for clinical benefit into reality. Drug Discov Today 24, 1217-1223. doi:10.1016/j.drudis.2019.03.011
Han, L. Q., Wang, S., Ma, J. L. et al. (2023). Expression and significance of serum KL-6 in patients with acute respiratory distress syndrome. J Thorac Dis 15, 6988-6995. doi:10.21037/jtd-23-1787
Han, J.J. (2023). FDA modernization act 2.0 allows for alternatives to animal testing. Artif Organs 47, 449-450. doi:10.1111/aor.14503
Hargrove-Grimes, P., Low, L. A. and Tagle, D. A. (2021). Microphysiological systems: What it takes for community adoption. Exp Biol Medicine 246, 1435-1446. doi:10.1177/15353702211008872
Hargrove-Grimes, P., Low, L. A. and Tagle, D. A. (2022). Microphysiological systems: stakeholder challenges to adoption in drug development. Cells Tissues Organs 211, 269-281. doi:10.1159/000517422
Harrison, S. P., Baumgarten, S. F., Verma, R. et al. (2021). Liver organoids: recent developments, limitations and potential. Front Med (Lausanne) 8, 574047. doi:10.3389/fmed.2021.574047
Henry, O. Y. F., Villenave, R., Cronce, M. J. et al. (2017). Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip 17, 2264-2271. doi:10.1039/c7lc00155j
Hidalgo, I. J., Raub, T. J. and Borchardt, R. T. (1989). Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96, 736-749. https://www.ncbi.nlm.nih.gov/pubmed/2914637
Hornberg, J. J., Laursen, M., Brenden, N. et al. (2014). Exploratory toxicology as an integrated part of drug discovery. Part II: Screening strategies. Drug Discov Today 19, 1137-1144. doi:10.1016/j.drudis.2013.12.009
Howell, B. A., Yang, Y., Kumar, R. et al. (2012). In vitro to in vivo extrapolation and species response comparisons for drug-induced liver injury (DILI) using DILIsym: a mechanistic, mathematical model of DILI. J Pharmacokinet Pharmacodyn 39, 527-541. doi:10.1007/s10928-012-9266-0
Huang, P., Xia, L., Guo, Q. et al. (2022). Genome-wide association studies identify miRNA-194 as a prognostic biomarker for gastrointestinal cancer by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5. Front Oncol 12, 1025594. doi:10.3389/fonc.2022.1025594
Huh, D., B. D. M., Matthews, B.D., Mammoto, A. et al. (2010). Reconstituting organ-level lung functions on a chip. Science 328, 1662-1668. doi:10.1126/science.1188302
Huggins, D.J., Sherman, W. and Tidor, B. (2012). Rational approaches to improving selectivity in drug design. J Med Chem 55, 1424-1444. doi:10.1021/jm2010332
Iluz-Freundlich, D., Zhang, M., Uhanova, J. et al. (2020). The relative expression of hepatocellular and cholestatic liver enzymes in adult patients with liver disease. Ann Hepatol 19, 204-208. doi:10.1016/j.aohep.2019.08.004
Imai, T., Imoto, M., Sakamoto, H. et al. (2005). Identification of esterases expressed in Caco-2 cells and effects of their hydrolyzing activity in predicting human intestinal absorption. Drug Metab Dispos 33, 1185-1190. doi:10.1124/dmd.105.004226
Ingber, D. E. (2020). Is it time for reviewer 3 to request human organ chip experiments instead of animal validation studies? Adv Sci (Weinh) 7, 2002030. doi:10.1002/advs.202002030
Ingber, D. E. (2022). Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet 23, 467-491. doi:10.1038/s41576-022-00466-9
Ishida, S. (2021). Research and development of microphysiological systems in japan supported by the AMED-MPS project. Front Toxicol 3, 657765. doi:10.3389/ftox.2021.657765
Jackel, S., Pipp, F. C., Emde, B. et al. (2021). L-citrulline: A preclinical safety biomarker for the small intestine in rats and dogs in repeat dose toxicity studies. J Pharmacol Toxicol Methods 111, 107110. doi:10.1016/j.vascn.2021.107110
Jackson, E. L. and Lu, H. (2016). Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integr Biol (Camb) 8, 672-683. doi:10.1039/c6ib00039h
Jagdish, R. K., Maras, J. S. and Sarin, S. K. (2021). Albumin in advanced liver diseases: the good and bad of a drug! Hepatology 74, 2848-2862. doi:10.1002/hep.31836
Jalili-Firoozinezhad, S., Gazzaniga, F. S., Calamari, E. L., et al. (2019). A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng 3, 520-531. doi:10.1038/s41551-019-0397-0
Jang, K. J., Otieno, M. A., Ronxhi, J. et al. (2019). Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med 11, eaax5516. doi:10.1126/scitranslmed.aax5516
Jang, M., Neuzil, P., Volk, T. et al. (2015). On-chip three-dimensional cell culture in phaseguides improves hepatocyte functions in vitro. Biomicrofluidics 9, 034113. doi:10.1063/1.4922863
Jardim, D. L., Groves, E. S., Breitfeld, P. P. et al. (2017). Factors associated with failure of oncology drugs in late-stage clinical development: A systematic review. Cancer Treat Rev 52, 12-21. doi:10.1016/j.ctrv.2016.10.009
Jensen, C. and Teng, Y. (2020). Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7, 33. doi:10.3389/fmolb.2020.00033
Johnson, S. A., Rupp, A. B., Rupp, K. L. et al. (2021). Clinical outcomes and costs associated with procalcitonin utilization in hospitalized patients with pneumonia, heart failure, viral respiratory infection, or chronic obstructive pulmonary disease. Intern Emerg Med 16, 677-686. doi:10.1007/s11739-020-02618-3
Jopling, C. L., Yi, M., Lancaster, A. M. et al. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577-1581. doi:10.1126/science.1113329
Jukic, A., Bakiri, L., Wagner, E. F. et al. (2021). Calprotectin: from biomarker to biological function. Gut 70, 1978-1988. doi:10.1136/gutjnl-2021-324855
Kalra, A., Yetiskul, E., Wehrle, C. J. et al. (2024). Physiology, Liver. In StatPearls. https://www.ncbi.nlm.nih.gov/pubmed/30571059
Kanabekova, P., Kadyrova, A. and Kulsharova, G. (2022). Microfluidic organ-on-a-chip devices for liver disease modeling in vitro. Micromachines (Basel), 13. doi:10.3390/mi13030428
Kane, S. V., Sandborn, W. J., Rufo, P. A. et al. (2003). Fecal lactoferrin is a sensitive and specific marker in identifying intestinal inflammation. Am J Gastroenterol 98, 1309-1314. doi:10.1111/j.1572-0241.2003.07458.x
Kang, Y. B., Rawat, S., Duchemin, N. et al. (2017). Human liver sinusoid on a chip for hepatitis b virus replication study. Micromachines 8. doi:10.3390/mi8010027
Kang, Y. B., Eo, J., Bulutoglu, B. et al. (2020). Progressive hypoxia-on-a-chip: An in vitro oxygen gradient model for capturing the effects of hypoxia on primary hepatocytes in health and disease. Biotechnol Bioeng 117, 763-775. doi:10.1002/bit.27225
Kang, Y. B. A., Eo, J., Mert, S. et al. (2018). Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci Rep 8, 8951. doi:10.1038/s41598-018-27179-6
Kanno, T., Sudo, K., Maekawa, M. et al. (1988). Lactate dehydrogenase M-subunit deficiency: a new type of hereditary exertional myopathy. Clin Chim Acta 173, 89-98. doi:10.1016/0009-8981(88)90359-2
Kapalczynska, M., Kolenda, T., Przybyla, W. et al. (2018). 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci 14, 910-919. doi:10.5114/aoms.2016.63743
Kasendra, M., Luc, R., Yin, J. et al. (2020). Duodenum intestine-chip for preclinical drug assessment in a human relevant model. Elife 9, e50135. doi:10.7554/eLife.50135
Katsura, H., Kobayashi, Y., Tata, P. R. et al. (2019). IL-1 and TNFα contribute to the inflammatory niche to enhance alveolar regeneration. Stem Cell Reports 12, 657-666. doi:10.1016/j.stemcr.2019.02.013
Kenna, J. G. and Uetrecht, J. (2018). Do in vitro assays predict drug candidate idiosyncratic drug-induced liver injury risk? DMD 46, 1658-1669. doi:10.1124/dmd.118.082719
Kerns, S.J., Belgur, C., Petropolis, D. et al. (2021). Human immunocompetent Organ-on-Chip platforms allow safety profiling of tumor-targeted T-cell bispecific antibodies. Elife 10, e67106. doi:10.7554/eLife.67106
Kia, R., Kelly, L., Sison-Young, R. L. et al. (2015). MicroRNA-122: a novel hepatocyte-enriched in vitro marker of drug-induced cellular toxicity. Toxicol Sci 144, 173-185. doi:10.1093/toxsci/kfu269
Kilic, O., Yoon, A, Shah, S. R. et al. (2019). A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Nat Biomed Eng 3, 532-544. doi:10.1038/s41551-019-0366-7
Kim, H. J., Huh, D., Hamilton, G. et al. (2012). Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165-2174. doi:10.1039/c2lc40074j
Kim, H. J. and Ingber, D. E. (2013). Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 5, 1130-1140. doi:10.1039/C3IB40126J
Kim, H. J., Li, H., Collins, J. J. et al. (2016). Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A 113, E7-15. doi:10.1073/pnas.1522193112
Konikoff, M. R. and Denson, L. A. (2006). Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm Bowel Dis 12, 524-534. doi:10.1097/00054725-200606000-00013
Korver, S., Bowen, J., Pearson, K. et al. (2021). The application of cytokeratin-18 as a biomarker for drug-induced liver injury. Arch Toxicol 95, 3435-3448. doi:10.1007/s00204-021-03121-0
Kostrzewski, T., Cornforth, T., Snow, S. A. et al. (2017). Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease. World J Gastroenterol 23, 204-215. doi:10.3748/wjg.v23.i2.204
Kostrzewski, T., Maraver, P., Ouro-Gnao, L. et al. (2020). A Microphysiological system for studying nonalcoholic steatohepatitis. Hepatol Commun 4, 77-91. doi:10.1002/hep4.1450
Kostrzewski, T., Snow, S., Battle, A. L. et al. (2021). Modelling human liver fibrosis in the context of non-alcoholic steatohepatitis using a microphysiological system. Commun Biol 4, 1080. doi:10.1038/s42003-021-02616-x
Kubinyi, H. (2003). Drug research: myths, hype and reality. Nat Rev Drug Discov 2, 665-668. doi:10.1038/nrd1156
Kulsharova, G. and Kurmangaliyeva, A. (2021). Liver microphysiological platforms for drug metabolism applications. Cell Prolif, 54, e13099. doi:10.1111/cpr.13099
Kulthong, K., Duivenvoorde, L., Sun, H. et al. (2020). Microfluidic chip for culturing intestinal epithelial cell layers: Characterization and comparison of drug transport between dynamic and static models. Toxicol In Vitro 65, 104815. doi:10.1016/j.tiv.2020.104815
Kulthong, K., Hooiveld, G., Duivenvoorde, L. et al. (2021). Transcriptome comparisons of in vitro intestinal epithelia grown under static and microfluidic gut-on-chip conditions with in vivo human epithelia. Sci Rep 11, 3234. doi:10.1038/s41598-021-82853-6
Kurokawa, Y. K. and George, S. C. (2016). Tissue engineering the cardiac microenvironment: Multicellular microphysiological systems for drug screening. Adv Drug Deliv Rev 96, 225-233. doi:10.1016/j.addr.2015.07.004
Langhorst, J., Elsenbruch, S., Koelzer, J. et al. (2008). Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am J Gastroenterol 103, 162-169. doi:10.1111/j.1572-0241.2007.01556.x
Larregieu, C. A. and Benet, L. Z. (2013). Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS J 15, 483-497. doi:10.1208/s12248-013-9456-8
Lau, E., Marques, C., Pestana, D. et al. (2016). The role of I-FABP as a biomarker of intestinal barrier dysfunction driven by gut microbiota changes in obesity. Nutr Metab 13, 31. doi:10.1186/s12986-016-0089-7
Laurino, A., Franceschini, A., Pesce, L. et al. (2023). A guide to perform 3D histology of biological tissues with fluorescence microscopy. Int J Mol Sci 24, 6747. doi:10.3390/ijms24076747
Lea, T. (2015). Caco-2 Cell Line. In K. Verhoeckx, P. Cotter, I. Lopez-Exposito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. Wichers (Eds.), The Impact of Food Bioactives on Health: in vitro and ex vivo models (pp. 103-111). doi:10.1007/978-3-319-16104-4_10
Leach, T, Gandhi, U., Reeves, K. D., et al. (2023). Development of a novel air–liquid interface airway tissue equivalent model for in vitro respiratory modeling studies. Sci Rep 13, 10137. doi:10.1038/s41598-023-36863-1
Lee, H., Chae, S., Kim, J. Y. et al. (2019). Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication 11, 025001. doi:10.1088/1758-5090/aaf9fa
Lee, S. W. L., Adriani, G., Ceccarello, E. et al. (2018). Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Front Immunol 9, 416. doi:10.3389/fimmu.2018.00416
Leise, M. D., Poterucha, J. J. and Talwalkar, J. A. (2014). Drug-induced liver injury. Mayo Clin Proc 89, 95-106. doi:10.1016/j.mayocp.2013.09.016
Lennernas, H., Ahrenstedt, O., Hallgren, R. et al. (1992). Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm Res 9, 1243-1251. doi:10.1023/a:1015888813741
Leri, A., Rota, M., Pasqualini, F. S. et al. (2015). Origin of cardiomyocytes in the adult heart. Circ Res 116, 150-166. doi:10.1161/CIRCRESAHA.116.303595
Leung, C.M, Haan, P.D., Ronaldson-Bouchard, K. et al., (2022). A guide to the organ-on-a-chip. Nat Rev Methods Primers 2, 33. doi:10.1038/s43586-022-00118-6
Levner, D. and Ewart, L. (2023). Integrating liver-chip data into pharmaceutical decision-making processes. Expert Opin Drug Discov 18, 1313-1320. doi:10.1080/17460441.2023.2255127
Li, X., George, S. M., Vernetti, L. et al. (2018). A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 18, 2614-2631. doi:10.1039/c8lc00418h
Li, K., Yang, X., Xue, C. et al. (2019). Biomimetic human lung-on-a-chip for modeling disease investigation. Biomicrofluidics 13, 031501. doi:10.1063/1.5100070
Liang, P., Lan, F., Lee, A. S. et al. (2013). Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127, 1677-1691. doi:10.1161/circulationaha.113.001883
Lim, A. Y., Kato, Y., Sakolish, C. et al. (2023). Reproducibility and robustness of a liver microphysiological system physiomimix lc12 under varying culture conditions and cell type combinations. Bioengineering 10, 1195. doi:10.3390/bioengineering10101195
Lin, C., Li, Y., McGlotten, J. et al. (1977). Isolation and identification of the major metabolite of albuterol in human urine. DMD 5, 234-238. https://dmd.aspetjournals.org/content/dmd/5/3/234.full.pdf
Lind, J. U., Yadid, M., Perkins, I. et al. (2017). Cardiac microphysiological devices with flexible thin-film sensors for higher-throughput drug screening. Lab Chip 17, 3692-3703. doi:10.1039/c7lc00740j
Liu, D., Saikam, V., Skrada, K. A. et al. (2022). Inflammatory bowel disease biomarkers. Med Res Rev 42, 1856-1887. doi:10.1002/med.21893
Liu, Y., Wang, S. and Wang, Y. (2016). Patterned fibers embedded microfluidic chips based on pla and pdms for ag nanoparticle safety testing. Polymers (Basel) 8, 402. doi:10.3390/polym8110402
Lohasz, C., Bonanini, F., Hoelting, L. et al. (2020). Predicting metabolism-related drug-drug interactions using a microphysiological multitissue system. Adv Biosyst 4, e2000079. doi:10.1002/adbi.202000079
Long, G. Y., Gong, R., Wang, Q. et al. (2022). Role of released mitochondrial DNA in acute lung injury. Frontiers in Immunology 13, 973089. doi:10.3389/fimmu.2022.973089
Low, L. A., Mummery, C., Berridge, B. R. et al. (2021). Organs-on-chips: into the next decade. Nat Rev Drug Discov 20, 345-361. doi:10.1038/s41573-020-0079-3
Lowe, D., et al. (2024). Alkaline Phosphatase, in StatPearls. Treasure Island (FL).
Maass, C., Stokes, C. L., Griffith, L. G. et al. (2017). Multi-functional scaling methodology for translational pharmacokinetic and pharmacodynamic applications using integrated microphysiological systems (MPS). Integr Biol 9, 290-302. doi:10.1039/c6ib00243a
Madden, L. R., Nguyen, T. V., Garcia-Mojica, S. et al. (2018). Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/Tox functions. iScience 2, 156-167. doi:10.1016/j.isci.2018.03.015
Magri, D., Gallo, G., Piepoli, M. et al. (2024). What about chronotropic incompetence in heart failure with mildly reduced ejection fraction? Clinical and prognostic implications from the metabolic exercise combined with cardiac and kidney indexes score dataset. Eur J Prev Cardiol 31, 263-271. doi:10.1093/eurjpc/zwad338
Maji, S., Lee, M., Lee, J. et al. (2023). Development of lumen-based perfusable 3D liver in vitro model using single-step bioprinting with composite bioinks. Mater Today Bio 21, 100723. doi:10.1016/j.mtbio.2023.100723
Malik, M., Yang, Y., Fathi, P. et al. (2021). Critical considerations for the design of multi-organ microphysiological systems (MPS). Front Cell Dev Biol 9, 721338. doi:10.3389/fcell.2021.721338
Maric, S., Restin, T., Muff, J. L. et al. (2021). Citrulline, biomarker of enterocyte functional mass and dietary supplement. metabolism, transport, and current evidence for clinical use. Nutrients 13, 2794. doi:10.3390/nu13082794
Martignoni, M., Groothuis, G. M. and de Kanter, R. (2006). Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2, 875-894. doi:10.1517/17425255.2.6.875
Marx, U., Anderson, T. B., Baker, E. et al. (2020). Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 37, 365-394. doi:10.14573/altex.2001241
Marx, U., Anderson, T. B., Bahinski, A. et al. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272-321. doi:10.14573/altex.1603161
Mathur, A., Loskill, P., Shao, K. et al. (2015). Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5, 8883. doi:10.1038/srep08883
Mittal, E., Cupp, G. and Kang, Y. A. (2023). Simulating the effect of gut microbiome on cancer cell growth using a microfluidic device. Sensors (Basel), 23, 1265. doi:10.3390/s23031265
Miyoshi, J., Miyamoto, H., Goji, T. et al. (2015). Serum diamine oxidase activity as a predictor of gastrointestinal toxicity and malnutrition due to anticancer drugs. J Gastroenterol Hepatol 30, 1582-1590. doi:10.1111/jgh.13004
Mofrad, P., Contos, M. J., Haque, M. et al. (2003). Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology 37, 1286-1292. doi:10.1053/jhep.2003.50229
Moman, R. N., Gupta, N. and Varacallo, M. (2024). Physiology, Albumin, in StatPearls. Treasure Island (FL).
Moradi, E., Jalili-Firoozinezhad, S. and Solati-Hashjin, M. (2020). Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomaterialia 116, 67-83. doi:10.1016/j.actbio.2020.08.041
Morelli, M., Kurek, D., Ng, C. P. et al. (2023). Gut-on-a-chip models: current and future perspectives for host-microbial interactions research. Biomedicines 11, 619. doi:10.3390/biomedicines11020619
Moretti, A., Bellin, M., Welling, A. et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363, 1397-1409. doi:10.1056/NEJMoa0908679
Morgan, S. J., Elangbam, C. S., Berens, S. et al. (2013). Use of animal models of human disease for nonclinical safety assessment of novel pharmaceuticals. Toxicol Pathol 41, 508-518. doi:10.1177/0192623312457273
Murray, D. D., Itenov, T. S., Sivapalan, P. et al. (2019). Biomarkers of acute lung injury the individualized approach: for phenotyping, risk stratification and treatment surveillance. J Clin Med 8, 1163. doi:10.3390/jcm8081163
Nagy, P., Thorgeirsson, S. S. and Grisham, J. W. (2020). Organizational principles of the liver. In The Liver (pp. 1-13). doi:10.1002/9781119436812.ch1
Najjar, A., Kramer, N., Gardner, I. et al. (2023). Editorial: Advances in and applications of predictive toxicology: 2022. Front Pharmacol 14, 1257423. doi:10.3389/fphar.2023.1257423
Nakao, Y., Kimura, H., Sakai, Y. et al. (2011). Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 5, 22212. doi:10.1063/1.3580753
Namikawa, T., Fukudome, I., Kitagawa, H. et al. (2012). Plasma diamine oxidase activity is a useful biomarker for evaluating gastrointestinal tract toxicities during chemotherapy with oral fluorouracil anti-cancer drugs in patients with gastric cancer. Oncology 82, 147-152. doi:10.1159/000336799
Natarajan, V., Simoneau, C. R., Erickson, A. L. et al. (2022). Modelling T-cell immunity against hepatitis C virus with liver organoids in a microfluidic coculture system. Open Biol 12, 210320. doi:10.1098/rsob.210320
Naumovska, E., Aalderink, G., Valencia, C. et al. (2020). Direct on-chip differentiation of intestinal tubules from induced pluripotent stem cells. Int J Mol Sci 21. doi:10.3390/ijms21144964
Nawroth, J. C., Barrile, R., Conegliano, D. et al. (2019). Stem cell-based lung-on-chips: The best of both worlds? Adv Drug Deliv Rev 140, 12-32. doi:10.1016/j.addr.2018.07.005
Nawroth, J. C., Petropolis, D. B., Manatakis, D. V. et al. (2021). Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Rep 36, 109393. doi:10.1016/j.celrep.2021.109393
Nawroth, J. C., Roth, D., van Schadewijk, A. et al. (2023). Breathing on chip: Dynamic flow and stretch accelerate mucociliary maturation of airway epithelium in vitro. Mater Today Bio 21, 100713. doi:10.1016/j.mtbio.2023.100713
Nelson, M. T., Charbonneau, M. R., Coia, H. G. et al. (2021). Characterization of an engineered live bacterial therapeutic for the treatment of phenylketonuria in a human gut-on-a-chip. Nat Commun 12, 2805. doi:10.1038/s41467-021-23072-5
Nesmith, A. P., Agarwal, A., McCain, M.L., et al. (2014). Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation. Lab Chip 14, 3925-3936. doi:10.1039/c4lc00688g
Nguyen, N., Nguyen, W., Nguyenton, B. et al. (2017). Adult human primary cardiomyocyte-based model for the simultaneous prediction of drug-induced inotropic and pro-arrhythmia risk. Front Physiol 8, 1073. doi:10.3389/fphys.2017.01073
Norman, B. H. (2020). Drug induced liver injury (DILI). Mechanisms and medicinal chemistry avoidance/mitigation strategies. J Med Chem 63, 11397-11419. doi:10.1021/acs.jmedchem.0c00524
Novac, O., Silva, R., Young, L. M. et al. (2022). Human liver microphysiological system for assessing drug-induced liver toxicity in vitro. J Vis Exp (179), e63389. doi:10.3791/63389
Okada, K., Sekino, M., Funaoka, H. et al. (2018). Intestinal fatty acid-binding protein levels in patients with chronic renal failure. J Surg Res 230, 94-100. doi:10.1016/j.jss.2018.04.057
Oleaga, C., Bernabini, C., Smith, A. S. et al. (2016). Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 6, 20030. doi:10.1038/srep20030
Ong, L. J. Y., Ching, T., Chong, L. H. et al. (2019). Self-aligning tetris-like (TILE) modular microfluidic platform for mimicking multi-organ interactions. Lab Chip 19, 2178-2191. doi:10.1039/c9lc00160c
Ortega-Prieto, A. M., Skelton, J. K., Cherry, C. et al. (2019). "Liver-on-a-chip" cultures of primary hepatocytes and kupffer cells for hepatitis B virus infection. J Vis Exp (144), e58333. doi:10.3791/58333
Ortega-Prieto, A. M., Skelton, J. K., Wai, S. N. et al. (2018). 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun 9, 682. doi:10.1038/s41467-018-02969-8
Otumala, A. E., Hellen, D. J., Luna, C. A. et al. (2023). Opportunities and considerations for studying liver disease with microphysiological systems on a chip. Lab Chip 23, 2877-2898. doi:10.1039/d2lc00940d
Pamies, D., Ekert, J., Zurich, M. G. et al. (2024). Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Rep 19, 1041-1041. doi:10.1016/j.stemcr.2024.06.007
Paone, P. and Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69, 2232-2243. doi:10.1136/gutjnl-2020-322260
Papadia, C., Sherwood, R. A., Kalantzis, C. et al. (2007). Plasma citrulline concentration: a reliable marker of small bowel absorptive capacity independent of intestinal inflammation. Am J Gastroenterol 102, 1474-1482. doi:10.1111/j.1572-0241.2007.01239.x
Parasrampuria, D. A., Benet, L. Z. and Sharma, A. (2018). Why drugs fail in late stages of development: case study analyses from the last decade and recommendations. AAPS J 20, 46. doi:10.1208/s12248-018-0204-y
Park, J. Y., Ryu, H., Lee, B. et al. (2018). Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication 11, 015002. doi:10.1088/1758-5090/aae545
Penarete-Acosta, D., Stading, R., Emerson, L. et al. (2023). A microfluidic model of colonocyte-microbiota interaction mimicking the colorectal cancer microenvironment. bioRxiv. doi:10.1101/2023.08.29.555442
Penarete-Acosta, D., Stading, R,, Emerson, L. et al. (2024). A microfluidic co-culture model for investigating colonocytes–microbiota interactions in colorectal cancer. Lab Chip 24, 3690-3703. doi:10.1039/D4LC00013G
Peters, M. F., Choy, A. L., Pin, C. et al. (2020). Developing in vitro assays to transform gastrointestinal safety assessment: potential for microphysiological systems. Lab Chip 20, 1177-1190. doi:10.1039/c9lc01107b
Peters, M. F., Landry, T., Pin, C. et al. (2019). Human 3D gastrointestinal microtissue barrier function as a predictor of drug-induced diarrhea. Toxicol Sci 168, 3-17. doi:10.1093/toxsci/kfy268
Picollet-D'hahan, N., Zuchowska, A., Lemeunier, I. et al. (2021). Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol 39, 788-810. doi:10.1016/j.tibtech.2020.11.014
Picot, D., Garin, L., Trivin, F. et al. (2010). Plasma citrulline is a marker of absorptive small bowel length in patients with transient enterostomy and acute intestinal failure. Clin Nutr 29, 235-242. doi:10.1016/j.clnu.2009.08.010
Pimenta, J., Ribeiro, R., Almeida, R. et al. (2022). Organ-on-chip approaches for intestinal 3D in vitro modeling. CMGH 13, 351-367. doi:10.1016/j.jcmgh.2021.08.015
Plebani, R., Potla, R., Soong, M. et al. (2022). Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros 21, 606-615. doi:10.1016/j.jcf.2021.10.004
Pocock, K., Delon, L., Bala, V. et al. (2017). Intestine-on-a-chip microfluidic model for efficient in vitro screening of oral chemotherapeutic uptake. ACS Biomater Sci Eng 3, 951-959. doi:10.1021/acsbiomaterials.7b00023
Proctor, W. R., Foster, A. J., Vogt, J. et al. (2017). Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Arch Toxicol 91, 2849-2863. doi:10.1007/s00204-017-2002-1
Purdie, J. L., Kowle, R. L., Langland, A. L. et al. (2016). Cell culture media impact on drug product solution stability. Biotechnol Prog 32, 998-1008. doi:10.1002/btpr.2289
Rajan, S.A.P., Aleman, J., Wan, M. et al. (2020). Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomaterialia 106, 124-135. doi:10.1016/j.actbio.2020.02.015
Rebs, S., Sedaghat-Hamedani, F., Kayvanpour, E. et al. (2020). Generation of pluripotent stem cell lines and CRISPR/Cas9 modified isogenic controls from a patient with dilated cardiomyopathy harboring a RBM20 p.R634W mutation. Stem Cell Res 47, 101901. doi:10.1016/j.scr.2020.101901
Regev, A. (2014). Drug-induced liver injury and drug development: industry perspective. Semin Liver Dis 34, 227-239. doi:10.1055/s-0034-1375962
Ren, L., Liu, W., Wang, Y. et al. (2013). Investigation of hypoxia-induced myocardial injury dynamics in a tissue interface mimicking microfluidic device. Anal Chem 85, 235-244. doi:10.1021/ac3025812
Reyes, D. R., Esch, M. B., Ewart, L. et al. (2024). From animal testing to systems: advancing standardization in microphysiological systems. Lab Chip 24, 1076-1087. doi:10.1039/d3lc00994g
Ribeiro, A. J. S., Yang, X., Patel, V. et al. (2019). Liver microphysiological systems for predicting and evaluating drug effects. Clin Pharmacol Ther 106, 139-147. doi:10.1002/cpt.1458
Rizki-Safitri, A., Tokito, F. and Nishikawa, M. (2021). Prospect of in vitro bile fluids collection in improving cell-based assay of liver function. Front Toxicol 3, 657432. doi:10.3389/ftox.2021.657432
Roderburg, C., Benz, F., Cardenas, D. et al. (2015). Elevated miR-122 serum levels are an independent marker of liver injury in inflammatory diseases. Liver Int 35, 1172-1184. doi:10.1111/liv.12627
Ronaldson-Bouchard, K., Ma, S. P., Yeager, K. (2019). Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 572, E16-E17. doi:10.1038/s41586-019-1415-9
Ronaldson-Bouchard, K. and Vunjak-Novakovic, G. (2018). Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22, 310-324. doi:10.1016/j.stem.2018.02.011
Rose, K. A., Holman, N. S., Green, A. M. et al. (2016). Co-culture of hepatocytes and kupffer cells as an in vitro model of inflammation and drug-induced hepatotoxicity. J Pharm Sci 105, 950-964. doi:10.1016/S0022-3549(15)00192-6
Ross, Y. and Ballou, S. (2023). Reliability of C-reactive protein as an inflammatory marker in patients with immune-mediated inflammatory diseases and liver dysfunction. Rheumatol Adv Pract 7, rkad045. doi:10.1093/rap/rkad045
Rowe, C., Gerrard, D. T., Jenkins, R. et al. (2013). Proteome-wide analyses of human hepatocytes during differentiation and dedifferentiation. Hepatology 58, 799-809. doi:10.1002/hep.26414
Rowe, C., Shaeri, M., Large, E. et al. (2018). Perfused human hepatocyte microtissues identify reactive metabolite-forming and mitochondria-perturbing hepatotoxins. Toxicol In Vitro 46, 29-38. doi:10.1016/j.tiv.2017.09.012
Rubiano, A., Indapurkar, A., Yokosawa, R. et al. (2021). Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. Clin Transl Sci 14, 1049-1061. doi:10.1111/cts.12969
Salameh, H., Raff, E., Erwin, A. et al. (2015). PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am J Gastroenterol 110, 846-856. doi:10.1038/ajg.2015.137
Sandoval, Y., Januzzi, J. L. and Jaffe, A. S. (2020). Cardiac troponin for assessment of myocardial injury in COVID-19: jacc review topic of the week. J Am Coll Cardiol 76, 1244-1258. doi:10.1016/j.jacc.2020.06.068
Santana, P. T., Rosas, S. L. B., Ribeiro, B. E. et al. (2022). Dysbiosis in inflammatory bowel disease: pathogenic role and potential therapeutic targets. Int J Mol Sci 23. doi:10.3390/ijms23073464
Santbergen, M. J. C., van der Zande, M., Gerssen, A. et al. (2020). Dynamic in vitro intestinal barrier model coupled to chip-based liquid chromatography mass spectrometry for oral bioavailability studies. Anal Bioanal Chem 412, 1111-1122. doi:10.1007/s00216-019-02336-6
Sasaki, Y., Tatsuoka, H., Tsuda, M. (2022). Intestinal permeability of drugs in caco-2 cells cultured in microfluidic devices. Biol Pharm Bull 45, 1246-1253. doi:10.1248/bpb.b22-00092
Savoji, H., Mohammadi, M. H., Rafatian, N., et al. (2019). Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials 198, 3-26. doi:10.1016/j.biomaterials.2018.09.036
Schmidt, E. S. and Schmidt, F. W. (1988). Glutamate dehydrogenase: biochemical and clinical aspects of an interesting enzyme. Clin Chim Acta 173, 43-55. doi:10.1016/0009-8981(88)90356-7
Schofield, C. A., Walker, T. M., Taylor, M. A. et al. (2021). Evaluation of a three-dimensional primary human hepatocyte spheroid model: adoption and industrialization for the enhanced detection of drug-induced liver injury. Chem Res Toxicol 34, 2485-2499. doi:10.1021/acs.chemrestox.1c00227
Schomaker, S., Potter, D., Warner, R. et al. (2020). Serum glutamate dehydrogenase activity enables early detection of liver injury in subjects with underlying muscle impairments. Plos One 15, e0229753. doi:10.1371/journal.pone.0229753
Schulze, R. J., Schott, M. B., Casey, C. A. et al. (2019). The cell biology of the hepatocyte: A membrane trafficking machine. J Cell Biol 218, 2096-2112. doi:10.1083/jcb.201903090
Schurink, M., Kooi, E. M., Hulzebos, C. V. et al. (2015). Intestinal fatty acid-binding protein as a diagnostic marker for complicated and uncomplicated necrotizing enterocolitis: a prospective cohort study. PLoS One 10, e0121336. doi:10.1371/journal.pone.0121336
Seirup, M., Sengupta, S., Swanson, S. et al. (2022). Rapid changes in chromatin structure during dedifferentiation of primary hepatocytes in vitro. Genomics 114, 110330. doi:10.1016/j.ygeno.2022.110330
Serras, A. S., Rodrigues, J. S., Cipriano, M. et al. (2021). A critical perspective on 3D liver models for drug metabolism and toxicology studies. Front Cell Dev Biol 9, 626805. doi:10.3389/fcell.2021.626805
Shan, J., Schwartz, R. E., Ross, N. T. et al. (2013). Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat Chem Biol 9, 514-520. doi:10.1038/nchembio.1270
Shin, S. R., Zhang, Y. S., Kim, D. J. et al. (2016). Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem 88, 10019-10027. doi:10.1021/acs.analchem.6b02028
Shin, W. and Kim, H. J. (2022). 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert. Nat Protoc 17, 910-939. doi:10.1038/s41596-021-00674-3
Shin, W., Su, Z., Yi, S. S. et al. (2022). Single-cell transcriptomic mapping of intestinal epithelium that undergoes 3D morphogenesis and mechanodynamic stimulation in a gut-on-a-chip. iScience 25, 105521. doi:10.1016/j.isci.2022.105521
Shoemaker, J. T., Zhang, W., Atlas, S. I. et al. (2020). A 3D cell culture organ-on-a-chip platform with a breathable hemoglobin analogue augments and extends primary human hepatocyte functions in vitro. Front Mol Biosci 7, 568777. doi:10.3389/fmolb.2020.568777
Si, L., Bai, H., Rodas, M. et al. (2021a). A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng 5, 815-829. doi:10.1038/s41551-021-00718-9
Si, L., Bai, H., Oh, C. Y. et al. (2021b). Clinically relevant influenza virus evolution reconstituted in a human lung airway-on-a-chip. Microbiol Spectr 9, e0025721. doi:10.1128/Spectrum.00257-21
Signore, M. A., De Pascali, C., Giampetruzzi, L. et al. (2021). Gut-on-chip microphysiological systems: latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. Sens Bio-Sens Res 33, 100443. doi:10.1016/j.sbsr.2021.100443
Singh, K. P., Jaffe, A. S. and Liang, B. T. (2011). The clinical impact of circulating caspase-3 p17 level: a potential new biomarker for myocardial injury and cardiovascular disease. Future Cardiol 7, 443-445. doi:10.2217/fca.11.29
Sivapalan, P. and Jensen, J. U. (2021). Biomarkers in chronic obstructive pulmonary disease: emerging roles of eosinophils and procalcitonin. J Innate Immun 14, 89-97. doi:10.1159/000517161
Siwczak, F., Loffet, E., Kaminska, M. et al. (2021). Intestinal stem cell-on-chip to study human host-microbiota interaction. Front Immunol 12, 798552. doi:10.3389/fimmu.2021.798552
Smagris, E., BasuRay, S., Li, J. et al. (2015). Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61, 108-118. doi:10.1002/hep.27242
Snow, S. and Kodavanti, U. P. (2019). Respiratory Toxicity Biomarkers. Biomarkers in Toxicology, Second Edition. doi:10.1016/B978-0-12-814655-2.00013-X
Soares, I., Belote, B. L., Santin, E. et al. (2022). Morphological assessment and biomarkers of low-grade, chronic intestinal inflammation in production animals. Animals 12, 3036. doi:10.3390/ani12213036
Sobrino, A., Phan, D. T., Datta, R. et al. (2016). 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 6, 31589. doi:10.1038/srep31589
Sodero, G., Gentili, C., Mariani, F. et al. (2024). Procalcitonin and presepsin as markers of infectious respiratory diseases in children: a scoping review of the literature. Children, 11, 350. doi:10.3390/children11030350
Somers, G. I., Lindsay, N., Lowdon, B. M. et al. (2007). A comparison of the expression and metabolizing activities of phase I and II enzymes in freshly isolated human lung parenchymal cells and cryopreserved human hepatocytes. Drug Metab Dispos 35, 1797-1805. doi:10.1124/dmd.107.015966
Srivastava, S., Kedia, S., Kumar, S. et al. (2015). Serum human trefoil factor 3 is a biomarker for mucosal healing in ulcerative colitis patients with minimal disease activity. J Crohns Colitis 9, 575-579. doi:10.1093/ecco-jcc/jjv075
Stern, S., Wang, H. and Sadrieh, N. (2023). Microphysiological models for mechanistic-based prediction of idiosyncratic dili. Cells 12. doi:10.3390/cells12111476
Strelez, C., Chilakala, S., Ghaffarian, K. et al. (2021). Human colorectal cancer-on-chip model to study the microenvironmental influence on early metastatic spread. iScience 24, 102509. doi:10.1016/j.isci.2021.102509
Strimbu, K. and Tavel, J. A. (2010). What are biomarkers? Curr Opin HIV AIDS 5, 463-466. doi:10.1097/COH.0b013e32833ed177
Strobel, S., Kostadinova, R., Fiaschetti-Egli, K. et al. (2021). A 3D primary human cell-based in vitro model of non-alcoholic steatohepatitis for efficacy testing of clinical drug candidates. Sci Rep 11, 22765. doi:10.1038/s41598-021-01951-7
Strong, P., Ito, K., Murray, J. et al. (2018). Current approaches to the discovery of novel inhaled medicines. Drug Discovery Today 23, 1705-1717. doi:10.1016/j.drudis.2018.05.017
Sumigray, K. D., Terwilliger, M. and Lechler, T. (2018). Morphogenesis and compartmentalization of the intestinal crypt. Dev Cell 45, 183-197 e185. doi:10.1016/j.devcel.2018.03.024
Sun, D., Gao, W., Hu, H. et al. (2022). Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B 12, 3049-3062. doi:10.1016/j.apsb.2022.02.002
Sung, J. H., Wang, Y. I., Sriram, N. N. et al. (2019). Recent advances in body-on-a-chip systems. Anal Chem 91, 330-351. doi:10.1021/acs.analchem.8b05293
Swaters, D., van Veen, A., van Meurs, W. et al. (2022). a history of regulatory animal testing: what can we learn? Altern Lab Anim 50, 322-329. doi:10.1177/02611929221118001
Swift, B., Pfeifer, N. D. and Brouwer, K. L. (2010). Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42, 446-471. doi:10.3109/03602530903491881
Tacke, F. and Weiskirchen, R. (2012). Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol 6, 67-80. doi:10.1586/egh.11.92
Tagle, D. A. (2019). The NIH microphysiological systems program: developing in vitro tools for safety and efficacy in drug development. Curr Opin Pharmacol 48, 146-154. doi:10.1016/j.coph.2019.09.007
Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. doi:10.1016/j.cell.2006.07.024
Takeda, M., Miyagawa, S., Fukushima, S. et al. (2018). Development of in vitro drug-induced cardiotoxicity assay by using three-dimensional cardiac tissues derived from human induced pluripotent stem cells. Tissue Eng Part C Methods 24, 56-67. doi:10.1089/ten.TEC.2017.0247
Tan, K., Coppeta, J., Azizgolshani, H. et al. (2020). A high-throughput microfluidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions. Lab Chip 20, 3653-3653. doi:10.1039/d0lc90069a
Tan, Y., Zhan, X. J., Cui, H. B. et al. (2021). The application of procalcitonin in respiratory diseases: an evaluation of the current research literature. Ann Palliat Med 10, 5329-5340. doi:10.21037/apm-21-840
Tasnim, F., Huang, X., Lee, C. Z. W. et al. (2021). Recent advances in models of immune-mediated drug-induced liver injury. Front Toxicol 3, 605392. doi:10.3389/ftox.2021.605392
Tatrai, P. and Krajcsi, P. (2020). Prediction of drug-induced hyperbilirubinemia by in vitro testing. Pharmaceutics 12, 755. doi:10.3390/pharmaceutics12080755
Taylor, D. L., Gough, A., Schurdak, M. E. et al. (2019). Harnessing human microphysiology systems as key experimental models for quantitative systems pharmacology. Handb Exp Pharmacol 260, 327-367. doi:10.1007/164_2019_239
Temple, R. (2006). Hy's Law: predicting serious hepatotoxicity. Pharmacoepidemiol Drug Saf 15, 241-243. doi:10.1002/pds.1211
Ternes, D., Karta, J., Tsenkova, M. et al. (2020). Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol 28, 698-698. doi:10.1016/j.tim.2020.05.013
Ternes, D., Tsenkova, M., Pozdeev, V. I. et al. (2022). The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat Metab 4, 458-475. doi:10.1038/s42255-022-00558-0
Teufel, A., Itzel, T., Erhart, W. et al. (2016). Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients. Gastroenterology 151, 513-525 e510. doi:10.1053/j.gastro.2016.05.051
Thelen, K. and Dressman, J. B. (2009). Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol 61, 541-558. doi:10.1211/jpp/61.05.0002
Theobald, J., Maaty, M. A., Kusterer, N. et al. (2019). In vitro metabolic activation of vitamin D3 by using a multi-compartment microfluidic liver-kidney organ on chip platform. Sci Rep 9, 4616. doi:10.1038/s41598-019-40851-9
Thummel, K. E. (2007). Gut instincts: CYP3A4 and intestinal drug metabolism. J Clin Invest 117, 3173-3176. doi:10.1172/JCI34007
Tonon, F., Giobbe, G. G., Zambon, A. et al. (2019). In vitro metabolic zonation through oxygen gradient on a chip. Sci Rep 9, 13557. doi:10.1038/s41598-019-49412-6
Trapecar, M., Wogram, E., Svoboda, D. et al. (2021). Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases. Sci Adv 7. doi:10.1126/sciadv.abd1707
Travaglini, K. J., Nabhan, A. N., Penland, L. et al. (2020). A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619-625. doi:10.1038/s41586-020-2922-4
Treyer, A. and Musch, A. (2013). Hepatocyte polarity. Compr Physiol 3, 243-287. doi:10.1002/cphy.c120009
Tsao, C. W., Aday, A. W., Almarzooq, Z. I. et al. (2023). Heart disease and stroke statistics-2023 update: a report from the american heart association. Circulation 147, E93-E621. doi:10.1161/Cir.0000000000001123
Tu, C. Y., Chao, B. S. and Wu, J. C. (2018). Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Circ Res 123, 512-514. doi:10.1161/Circresaha.118.313472
Tutty, M. A., Movia, D. and Prina-Mello, A. (2022). Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Deliv Transl Res 12, 2048-2074. doi:10.1007/s13346-022-01147-0
Vaduganathan, M., Mensah, G. A., Turco, J. V. et al. (2022). The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol 80, 2361-2371. doi:10.1016/j.jacc.2022.11.005
Valiei, A., Aminian-Dehkordi, J. and Mofrad, M. R. K. (2023). Gut-on-a-chip models for dissecting the gut microbiology and physiology. APL Bioeng 7, 011502. doi:10.1063/5.0126541
van den Berg, A., Mummery, C. L., Passier, R. et al. (2019). Personalised organs-on-chips: functional testing for precision medicine. Lab Chip 19, 198-205. doi:10.1039/c8lc00827b
van Grunsven, L. A. (2017). 3D in vitro models of liver fibrosis. Adv Drug Deliv Rev 121, 133-146. doi:10.1016/j.addr.2017.07.004
van Meer, B. J., de Vries, H., Firth, K. S. A. et al. (2017). Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophys Res Commun 482, 323-328. doi:10.1016/j.bbrc.2016.11.062
van Ness, K. P., Cesar, F., Yeung, C. K. et al. (2022). Microphysiological systems in absorption, distribution, metabolism, and elimination sciences. Clin Transl Sci 15, 9-42. doi:10.1111/cts.13132
van Spreeuwel, A. C. C., Bax, N. A. M., van Nierop, B. J. et al. (2017). Mimicking cardiac fibrosis in a dish: fibroblast density rather than collagen density weakens cardiomyocyte function. J Cardiovasc Transl Res 10, 116-127. doi:10.1007/s12265-017-9737-1
Veldhuizen, J., Migrino, R. Q. and Nikkhah, M. (2019). Three-dimensional microengineered models of human cardiac diseases. J Biol Eng 13, 29. doi:10.1186/s13036-019-0155-6
Venturelli, O. S., Carr, A. C., Fisher, G. et al. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol 14, e8157. doi:10.15252/msb.20178157
Vilstrup, H. (1980). Synthesis of urea after stimulation with amino-acids - relation to liver-function. Gut 21, 990-995. doi:10.1136/gut.21.11.990
Vivares, A., Salle-Lefort, S., Arabeyre-Fabre, C. et al. (2015). Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device. Xenobiotica 45, 29-44. doi:10.3109/00498254.2014.944612
Volpe, D. A. (2010). Application of method suitability for drug permeability classification. AAPS J 12, 670-678. doi:10.1208/s12248-010-9227-8
Volpe, D. A. (2011). Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. Future Med Chem 3, 2063-2077. doi:10.4155/fmc.11.149
Vreugdenhil, A. C., Wolters, V. M., Adriaanse, M. P. et al. (2011). Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand J Gastroenterol 46, 1435-1441. doi:10.3109/00365521.2011.627447
Vuorenpaa, H., Bjorninen, M., Valimaki, H. et al. (2023). Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Front Physiol 14, 1213959. doi:10.3389/fphys.2023.1213959
Walker, E. G., Baker, A. F. and Sauer, J. M. (2016). Promoting adoption of the 3Rs through regulatory qualification. Ilar Journal 57(2), 221-225. doi:10.1093/ilar/ilw032
Walker, T. R., Land, M. L., Kartashov, A. et al. (2007). Fecal lactoferrin is a sensitive and specific marker of disease activity in children and young adults with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 44, 414-422. doi:10.1097/MPG.0b013e3180308d8e
Wang, B. Z., Nash, T. R., Zhang, X. et al. (2023). Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery. Cell Rep Med 4, 100976. doi:10.1016/j.xcrm.2023.100976
Wang, H., Wen, T. Q., Zhu, W. et al. (2024). Microfluidic strategies for biomimetic lung chip establishment and SARS-CoV2 study. Mater Today Bio 24, 100905. doi:10.1016/j.mtbio.2023.100905
Wang, Y., Kim, R., Gunasekara, D. B. et al. (2018a). Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell Mol Gastroenterol Hepatol 5, 113-130. doi:10.1016/j.jcmgh.2017.10.007
Wang, Y., Wang, H., Deng, P. et al. (2018b). In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab Chip 18, 3606-3616. doi:10.1039/c8lc00869h
Wange, R. L., Brown, P. C. and Davis-Bruno, K. L. (2021). Implementation of the principles of the 3Rs of animal testing at CDER: Past, present and future. Regul Toxicol Pharmacol 123, 104953. doi:10.1016/j.yrtph.2021.104953
Wesseler, M. F., Taebnia, N., Harrison, S. et al. (2023). 3D microperfusion of mesoscale human microphysiological liver models improves functionality and recapitulates hepatic zonation. Acta Biomaterialia 171, 336-349. doi:10.1016/j.actbio.2023.09.022
Wieckowska, A., Zein, N. N., Yerian, L. M. et al. (2006). In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 44, 27-33. doi:10.1002/hep.21223
Woodcock, J. and Woosley, R. (2008). The FDA critical path initiative and its influence on new drug development. Annu Rev Med 59, 1-12. doi:10.1146/annurev.med.59.090506.155819
Wright, N. A., Poulsom, R., Stamp, G. et al. (1993). Trefoil peptide gene expression in gastrointestinal epithelial cells in inflammatory bowel disease. Gastroenterology 104, 12-20. doi:10.1016/0016-5085(93)90830-6
Wu, P., Deng, G., Sai, X. et al. (2021). Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep 41. doi:10.1042/BSR20200833
Wu, Q., Zhang, P., O'Leary, G. et al. (2023). Flexible 3D printed microwires and 3D microelectrodes for heart-on-a-chip engineering. Biofabrication 15, 035023. doi:10.1088/1758-5090/acd8f4
Xian, C., Zhang, J., Zhao, S. et al. (2023). Gut-on-a-chip for disease models. J Tissue Eng 14, 20417314221149882. doi:10.1177/20417314221149882
Xiao, Y., Zhang, B., Liu, H. et al. (2014). Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab Chip 14, 869-882. doi:10.1039/c3lc51123e
Xu, H., Wali, R., Cheruiyot, C. et al. (2021). Non-negative blind deconvolution for signal processing in a CRISPR-edited iPSC-cardiomyocyte model of dilated cardiomyopathy. FEBS Lett 595, 2544-2557. doi:10.1002/1873-3468.14189
Xu, Q. (2021). Human three-dimensional hepatic models: cell type variety and corresponding applications. Front Bioeng Biotechnol 9, 730008. doi:10.3389/fbioe.2021.730008
Yamazaki, D. (2023). Toward regulatory acceptance of MPS-cardiac safety assessment as an example. Yakugaku Zasshi 143, 55-63. doi:10.1248/yakushi.22-00161-3
Yang, L., Price, E. T., Chang, C. W. et al. (2013). Gene expression variability in human hepatic drug metabolizing enzymes and transporters. Plos One 8, e60368. doi:10.1371/journal.pone.0060368
Yang, S., Zhang, T., Ge, Y. et al. (2023). Sentinel supervised lung-on-a-chip: A new environmental toxicology platform for nanoplastic-induced lung injury. J Hazard Mater 15, 131962. doi:10.1016/j.jhazmat.2023.131962
Yang, S., Ooka, M., Margolis, R. J. et al. (2023). Liver three-dimensional cellular models for high-throughput chemical testing. Cell Rep Methods 3, 100432. doi:10.1016/j.crmeth.2023.100432
Yeon, J. H. and Park, J. K. (2009). Drug permeability assay using microhole-trapped cells in a microfluidic device. Anal Chem 81, 1944-1951. doi:10.1021/ac802351w
Yilmaz, Y., Williams, G., Walles, M. et al. (2019). Comparison of rat and human pulmonary metabolism using precision-cut lung slices (PCLS). Drug Metab Lett 13, 53-63. doi:10.2174/1872312812666181022114622
Yimu Zhao, S. L., Okhovatian, S., Liu, C. et al. (2024). Integrating organoids and organ-on-a-chip devices. Nat Rev Bioeng 2, 588–608. doi:10.1038/s44222-024-00207-z
Yoon, H. J., Lee, S., Kim, T. Y. et al. (2022). Sprayable nanomicelle hydrogels and inflammatory bowel disease patient cell chips for development of intestinal lesion-specific therapy. Bioact Mater 18, 433-445. doi:10.1016/j.bioactmat.2022.03.031
Zhang, C. J., Meyer, S. R., O'Meara, M. J. et al. (2023). A human liver organoid screening platform for DILI risk prediction. J Hepatol 78, 998-1006. doi:10.1016/j.jhep.2023.01.019
Zhang, D. and Qiao, L. (2023). Intestine-on-a-chip for intestinal disease study and pharmacological research. VIEW 4(1), 20220037. doi:10.1002/VIW.20220037
Zhang, Y., Xu, D., Bai, L. et al. (2022). A review of non-invasive drug delivery through respiratory routes. Pharmaceutics 14, 1974. doi:10.3390/pharmaceutics14091974
Zhang, S. Y., Ong, W. S. Y., Subelzu, N. et al. (2024). Validation of a Caco-2 microfluidic Chip model for predicting intestinal absorption of BCS Class I-IV drugs. Int J Pharm 656, 124089. doi:10.1016/j.ijpharm.2024.124089
Zhang, X., Jiang, T., Chen, D. et al. (2020). Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation. Crit Rev Toxicol 50, 279-309. doi:10.1080/10408444.2020.1756219
Zhang, Y., Jia, Y., Zheng, R. (2010). Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem 56, 1830-1838. doi:10.1373/clinchem.2010.147850
Zheng, D., Liwinski, T. and Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Res 30, 492-506. doi:10.1038/s41422-020-0332-7
Zhou, B., Shi, X., Tang, X. et al. (2022). Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct Target Ther 7, 254. doi:10.1038/s41392-022-01044-5
Zhou, Y., Shen, J. X. and Lauschke, V. M. (2019). Comprehensive evaluation of organotypic and microphysiological liver models for prediction of drug-induced liver injury. Front Pharmacol 10, 1093. doi:10.3389/fphar.2019.01093
Zucco, F., Batto, A. F., Bises, G. et al. (2005). An inter-laboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines. Altern Lab Anim 33, 603-618. doi:10.1177/026119290503300618
Zushin, P. J. H., Mukherjee, S., and Wu, J. C. (2023). FDA modernization act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J Clin Invest 133, e175824. doi:10.1172/JCI175824