Biology-inspired dynamic microphysiological system approaches to revolutionize basic research, healthcare and animal welfare
Main Article Content
Abstract
The regular t4 workshops on biology-inspired microphysiological systems (MPS) have become a reliable benchmark for assessing fundamental scientific, industrial, and regulatory trends in the MPS field. The 2023 workshop participants concluded that MPS technology as used in academia has matured significantly, as evidenced by the steadily increasing number of high-quality research publications, but that broad industrial adoption of MPS has been slow. Academic research using MPS is primarily aimed at accurately recapitulating human biology in MPS-based organ models to enable breakthrough discoveries. Examples of these developments are summarized in the report. In addition, we focus on key challenges identified during the previous workshop. Bridging gaps between academia, regulators, and industry is addressed. We also comment on overcoming barriers to trust and acceptance of MPS-derived data – the latter being particularly important in a regulatory environment. The status of implementation of the recommendations detailed in the 2020 report has been reviewed. It was concluded that communication between stakeholders has improved significantly, while the recommendations related to regulatory acceptance still need to be implemented. Participants noted that the remaining challenges for increased translation of these technologies into industrial use and regulatory decision-making will require further efforts on well-defined context of use qualifications, together with increased standardization. This will make MPS data more reliable and ultimately make these novel tools more economically sustainable. The long-term roadmap from the 2015 workshop was critically reviewed and updated. Recommendations for the next period and an outlook conclude the report.
Plain language summary
The regular t4 workshops on biology-inspired microphysiological systems have become a reliable benchmark for assessing trends in the field. Participants at the 2023 workshop concluded that the technology as used in academia has matured significantly, but that broad industry adoption of MPS has been slow. The primary goal of academic research is to accurately recapitulate human biology in MPS-based organ models to enable breakthrough discoveries. Participants commented on overcoming barriers to trust and acceptance of MPS-derived data, the latter being particularly important in a regulatory environment. They reviewed the status of implementation of the recommendations detailed in the 2020 report and conclude that communication between stakeholders has improved significantly, while recommendations related to regulatory acceptance still need to be implemented. Participants highlighted the need for further qualification and standardization. The long-term roadmap from the 2015 workshop was updated. Recommendations for the next period conclude the report.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Adashi, E. Y., O’Mahony, D. P. and Cohen, I. G. (2023). The FDA Modernization Act 2.0: Drug testing in animals is rendered optional. Am J Med 136, 853-854. doi:10.1016/j.amjmed.2023.03.033
Avila, A. M., Bebenek, I., Mendrick, D. L. et al. (2023). Gaps and challenges in nonclinical assessments of pharmaceuticals: An FDA/CDER perspective on considerations for development of new approach methodologies. Regul Toxicol Pharmacol 139, 105345. doi:10.1016/j.yrtph.2023.105345
Bai, H., Si, L., Jiang, A. et al. (2022). Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat Commun 13, 1928. doi:10.1038/s41467-022-29562-4
Baker, T. K., Van Vleet, T. R., Mahalingaiah, P. K. et al. (2024). The current status and use of microphysiological systems by the pharmaceutical industry: The International Consortium for Innovation and Quality Microphysiological Systems Affiliate survey and commentary. Drug Metab Dispos 52, 198-209. doi:10.1124/dmd.123.001510
Baran, S. W., Brown, P. C., Baudy, A. R. et al. (2022). Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate). ALTEX 39, 297-314. doi:10.14573/altex.2112203
Beilmann, M., Boonen, H., Czich, A. et al. (2019). Optimizing drug discovery by Investigative Toxicology: Current and future trends. ALTEX, 36(2), 289–313. doi:10.14573/altex.1808181
Bittenbinder, M. A., Bonanini, F., Kurek, D. et al. (2024). Using organ-on-a-chip technology to study haemorrhagic activities of snake venoms on endothelial tubules. Sci Rep 14, 11157. doi:10.1038/s41598-024-60282-5
Brandmair, K., Tao, T. P., Gerlach, S. et al. (2024). Suitability of different reconstructed human skin models in the skin and liver Chip2 microphysiological model to investigate the kinetics and first-pass skin metabolism of the hair dye, 4-amino-2-hydroxytoluene. J Appl Toxicol 44, 333-343. doi:10.1002/jat.4542
Cairns, J., Leonard, E., Khan, K. et al. (2023). Optimal experimental design for efficient toxicity testing in microphysiological systems: A bone marrow application. Front Pharmacol 14, 1142581. doi:10.3389/fphar.2023.1142581
Candarlioglu, P. L., Delsing, L., Gauthier, L. et al. (2024). Application of microphysiological systems for nonclinical evaluation of cell therapies. ALTEX 41, 469-484. doi:10.14573/altex.2402201
Casas, B., Vilén, L., Bauer, S. et al. (2022). Integrated experimental-computational analysis of a HepaRG liver-islet microphysiological system for human-centric diabetes research. PLoS Comput Biol 18, e1010587. doi:10.1371/journal.pcbi.1010587
Cox, B., Barton, P., Class, R. et al. (2022). Setup of human liver-chips integrating 3D models, microwells and a standardized microfluidic platform as proof-of-concept study to support drug evaluation. Biomater Biosyst 7, 100054. doi:10.1016/j.bbiosy.2022.100054
Dehne, E.-M. and Marx, U. (2020). The universal physiological template – a system to advance medicines. Curr Opin Toxicol 23-24, 1-5. doi:10.1016/j.cotox.2020.02.002
Ekert, J. E., Deakyne, J., Pribul-Allen, P. et al. (2020). Recommended guidelines for developing, qualifying, and implementing complex in vitro models (CIVMs) for drug discovery. SLAS Discovery 25, 1174-1190. doi:10.1177/2472555220923332
Ewart, L., Apostolou, A., Briggs, S. A. et al. (2022). Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology. Commun Med 2, 154. doi:10.1038/s43856-022-00209-1
Fuchs, S., Johansson, S., Anders, T., Werr, G., Mayr, T., Tenje, M. (2021). In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomater. Sci. Eng. 7, 2926-2948. doi:10.1021/acsbiomaterials.0c01110
Goyal, G., Prabhala, P., Mahajan, G. et al. (2022). Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv Sci (Weinh) 9, e2103241. doi:10.1002/advs.202103241
Grimm, D. (2024). EPA scraps plan to end all testing in mammals by 2035. Science 383, 248. doi:10.1126/science.ado0969
Hartung, T. (2023). A call for a Human Exposome Project. ALTEX 40, 4–33. doi:10.14573/altex.2301061
Herland, A., Maoz, B. M., Das, D. et al. (2020). Quantitative prediction of human pharmacokinetic (PK) parameters of drugs via fluidically coupled vascularized organ chips. Nat Biomed Eng 4, 421-436. doi:10.1038/s41551-019-0498-9
Ingber, D. E. (2022). Human organs-on-chips for disease modeling, drug development and personalized medicine. Nat Rev Genet 23, 467-491. doi:10.1038/s41576-022-00466-9
Irrechukwu, O., Yeager, R., David, R. et al. (2023). Applications of microphysiological systems to disease models in the biopharmaceutical industry: Opportunities and challenges. ALTEX 40, 485-518. doi:10.14573/altex.2204071
Ishida, S. (2021). Research and development of microphysiological systems in Japan supported by the AMED-MPS Project. Front Toxicol 3, 657765. doi:10.3389/ftox.2021.657765
Koenig, L., Ramme, A. P., Faust, D. et al. (2022). A human stem cell-derived brain-liver chip for assessing blood-brain-barrier permeation of pharmaceutical drugs. Cells 11, 3295. doi:10.3390/cells11203295
Kühnl, J., Tao, T. P., Brandmair, K. et al. (2021). Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model. Toxicology 448, 152637. doi:10.1016/j.tox.2020.152637
Lefever, D. E., Miedel, M. T., Pei, F. et al. (2022). A quantitative systems pharmacology platform reveals NAFLD pathophysiological states and targeting strategies. Metabolites 12, 528. doi:10.3390/metabo12060528
Leonel da Silva, R. G. and Blasimme, A. (2023). Organ chip research in Europe: Players, initiatives, and policies. Front Bioeng Biotechnol 11, 1237561. doi:10.3389/fbioe.2023.1237561
Leung, C. M., de Haan, P., Ronaldson-Bouchard, K. et al. (2022). A guide to the organ-on-a-chip. Nat Rev Methods Primers 2, 33. doi:10.1038/s43586-022-00118-6
Li, J., Wen, A., Potla, R. (2019). AAV-mediated gene therapy targeting TRPV4 mechanotransduction for treatment of pulmonary vascular leakage. APL Bioeng 3, 046103. doi:10.1063/1.5122967
Li, Z., Yu, D., Zhou, C. et al. (2024) Engineering vascularised organoid-on-a-chip: strategies, advances and future perspectives. Biomater Transl. 5(1):21–32. doi:10.12336/biomatertransl.2024.01.003
Maertens, A., Luechtefeld, T., and Hartung, T. (2024). Alternative Methods Go Green! Green Toxicology as a Sustainable Approach for Assessing Chemical Safety and Designing Safer Chemicals. ALTEX 41, 3-19. doi:10.14573/altex.2312291
Marx, U., Accastelli, E., David, R. et al. (2021). An individual patient’s “body” on chips – How organismoid theory can translate into your personal precision therapy approach. Front Med (Lausanne) 8, 728866. doi:10.3389/fmed.2021.728866
Marx, U., Akabane, T., Andersson, T. B. et al. (2020). Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 37, 365-394. doi:10.14573/altex.2001241
Marx, U., Andersson, T. B., Bahinski, A. et al. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272-321. doi:10.14573/altex.1603161
Milani, N., Parrott, N., Ortiz Franyuti, D. et al. (2022). Application of a gut–liver-on-a-chip device and mechanistic modelling to the quantitative in vitro pharmacokinetic study of mycophenolate mofetil. Lab Chip 22, 2853-2868. doi:10.1039/D2LC00276K
Morrison, A. I., Sjoerds, M. J., Vonk, L. A. et al. (2024). In vitro immunity: An overview of immunocompetent organ-on-chip models. Front Immunol 15, 1373186. doi:10.3389/fimmu.2024.1373186
Nahon, D.M., Moerkens, R., Aydogmus, H. et al. (2024) Standardizing designed and emergent quantitative features in microphysiological systems. Nat. Biomed. Eng 8, 941–962. doi:10.1038/s41551-024-01236-0
Negi, V., Gavlock, D., Miedel, M. T. et al. (2023). Modelling mechanisms underlying differential inflammatory responses to COVID-19 in type 2 diabetes using a patient-derived microphysiological organ-on-a-chip system. Lab Chip 23, 4514-4527. doi:10.1039/d3lc00285c
Nguyen, V. V. T., Gkouzioti, V., Maass, C. et al. (2023). A systematic review of kidney-on-a-chip-based models to study human renal (patho-)physiology. Dis Model Mech 16, dmm050113. doi:10.1242/dmm.050113
Nguyen, V. V. T., Ye, S., Gkouzioti, V. et al. (2022). A human kidney and liver organoid-based multi-organ-on-a-chip model to study the therapeutic effects and biodistribution of mesenchymal stromal cell-derived extracellular vesicles. J Extracell Vesicles 11, e12280. doi:10.1002/jev2.12280
OECD: Organisation for Economic Co-operation and Development (2019). Test No. 431: In vitro skin corrosion: Reconstructed human epidermis (RHE) test method, OECD Guidelines for the Testing of Chemicals, Section 4. Paris: OECD Publishing. doi:10.1787/9789264264618-en
OECD: Organisation for Economic Co-operation and Development (2021). Test No. 439: In vitro skin irritation: Reconstructed human epidermis test method, OECD Guidelines for the Testing of Chemicals, Section 4. Paris: OECD Publishing. doi:10.1787/9789264242845-en
Palasantzas, V. E. J. M., Tamargo-Rubio, I., Le, K. et al. (2023). iPSC-derived organ-on-a-chip models for personalized human genetics and pharmacogenomics studies. Trends Genet 39, 268-284. doi:10.1016/j.tig.2023.01.002
Pamies, D., Ekert, J., Zurich, M. G. et al. (2024). Recommendation on fit-for-purpose criteria to establish quality management for microphysiological systems (MPS) and for monitoring of their reproducibility. Stem Cell Reports 19, 1-14. doi:10.1016/j.stemcr.2024.03.009
Pamies, D., Leist, M., Coecke, S. et al. (2022). Guidance document on Good Cell and Tissue Culture Practice 2.0 (GCCP 2.0). ALTEX 39, 30-70. doi:10.14573/altex.2111011
Ramme, A. P., Koenig, L., Hasenberg, T. et al. (2019). Autologous induced pluripotent stem cell-derived four organ-chip. Future Sci OA 5, FSO413. doi:10.2144/fsoa-2019-0065
Ramsden, D., Belair, D. G., Agarwal, S. et al. (2022). Leveraging microphysiological systems to address challenges encountered during development of oligonucleotide therapeutics. ALTEX 39, 273-296. doi:10.14573/altex.2108241
Roth, A. and MPS-WS Berlin 2019 (2021). Human microphysiological systems for drug development. Science 373, 1304-1306. doi:10.1126/science.abc3734
Rumsey, J. W., Lorance, C., Jackson, M., et al. (2022) Classical complement pathway inhibition in a ‘human-on-a-chip’ model of autoimmune demyelinating neuropathies. Adv Ther (Weinh) 5, 2200030. doi:10.1002/adtp.202200030
Shakeri, A., Wang, Y., Zhao, Y. et al. (2023). Engineering organ-on-a-chip systems for vascular diseases. Arterioscler Thromb Vasc Biol 43, 2241-2255. doi:10.1161/ATVBAHA.123.318233
Sharma, A., Jin, L., Wang, X. et al. (2024). Developing an adult stem cell derived microphysiological intestinal system for predicting oral prodrug bioconversion and permeability in humans. Lab Chip 24, 339-355. doi:10.1039/d3lc00843f
Shoji, J. Y., Davis, R. P., Mummery, C. L. et al. (2023). Global meta-analysis of organoid and organ-on-chip research. Adv Healthc Mater e2301067. doi:10.1002/adhm.202301067
Si, L., Bai, H., Oh, C. Y. et al. (2022). Self-assembling short immunostimulatory duplex RNAs with broad-spectrum antiviral activity. Mol Ther Nucleic Acids 29, 923-940. doi:10.1016/j.omtn.2022.08.031
Sillé, F.C.M., Busquet, F., Fitzpatrick, S., et al. (2024). The Implementation Moonshot Project for Alternative Chemical Testing (IMPACT) toward a Human Exposome Project. ALTEX 41, 344–362. doi:10.14573/altex.2407081
Stresser, D. M., Kopec, A. K., Hewitt, P. et al. (2023). Towards in vitro models for reducing or replacing the use of animals in drug testing. Nat Biomed Eng. doi:10.1038/s41551-023-01154-7
Tao, T. P., Brandmair, K., Gerlach, S. et al. (2021). Demonstration of the first-pass metabolism in the skin of the hair dye, 4-amino-2-hydroxytoluene, using the Chip2 skin-liver microphysiological model. J Appl Toxicol 41, 1553-1567. doi:10.1002/jat.4146
Tao, T. P., Brandmair, K., Gerlach, S. et al. (2024). Application of a skin and liver Chip2 microphysiological model to investigate the route-dependent toxicokinetics and toxicodynamics of consumer-relevant doses of genistein. J Appl Toxicol 44, 287-300. doi:10.1002/jat.4540
Wagner, C. S., Zhang, L. and Leydesdorff, L. (2022). A discussion of measuring the top-1% most-highly cited publications: Quality and impact of Chinese papers. Scientometrics 127, 1825-1839. doi:10.1007/s11192-022-04291-z
Wang, H., Ning, X., Zhao, F. et al. (2024). Human organoids-on-chips for biomedical research and applications. Theranostics 14, 788-818. doi:10.7150/thno.90492
Wang, X., Kopec, A. K., Collinge, M. et al. (2023). Application of immunocompetent microphysiological systems in drug development: Current perspective and recommendations, ALTEX 40, 314-336. doi:10.14573/altex.2205311
Zhao, X., Xu, Z., Xiao, L. et al. (2021). Review on the vascularization of organoids and organoids-on-a-chip. Front Bioeng Biotech 9, 637048. doi:10.3389/fbioe.2021.637048
Zhu, J., Ji, L., Chen, Y. et al. (2023). Organoids and organs-on-chips: Insights into predicting the efficacy of systemic treatment in colorectal cancer. Cell Death Discov 9, 72. doi:10.1038/s41420-023-01354-9