The effect of surfactants and film-forming polymers on pulmonary surfactant function measured in vitro is dose rate dependent
Main Article Content
Abstract
Surfactants and film-forming polymers are common ingredients in consumer spray products such as cleaning products, hair care products, and anti-perspirants. Spraying eases application by creating aerosolized droplets of the product that can distribute evenly over the treated surface. However, these aerosols can potentially be inhaled during their normal application. Droplets that reach the alveoli can interact with the pulmonary surfactant; a complex mixture of phospholipids and proteins that regulates the surface tension at the air-liquid interface. This interaction could elevate the minimum surface tension at maximum compression and change the surface rheology of the pulmonary surfactant at the interface. We tested four surfactants and seven polymers for their ability to inhibit pulmonary surfactant function in vitro and investigated if the inhibition is dose-rate dependent i.e., the product of the concentration (mg/mL) and aerosolization rate (mL/min). We found that independent of chemical class (surfactant or polymer) there was a clear dose-rate dependent inhibition of pulmonary surfactant function and that different chemicals inhibited function at different dose-rates. We compared the points of departure of inhibitory chemicals to a polymer with known dose-rate dependent lung toxicity. When assessing the risk of chemicals that might be inhaled, it is essential to ensure normal use would not inhibit pulmonary surfactant function leading to immediate effects on the lungs.
Plain language summary
Spray products create a cloud of tiny droplets in the air when they are used. This cloud can be inhaled, and if it reaches the deepest parts of the lungs, it can interact with the thin layer of liquid, called pulmonary surfactant, that covers the cells. It protects the lung tissue during the constant movement of breathing. Droplets can sometimes disrupt the pulmonary surfactant function, making breathing difficult. Chemicals that are used in spray products must be tested to assess if they are harmful if inhaled. In this project we studied the effect of chemicals that are commonly found in spray products on the functioning of the pulmonary surfactant in vitro. The results can be combined with other in vitro methods to test if chemicals are harmful to inhale without testing on animals.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Alonso, C., Alig, T., Yoon, J. et al. (2004). More than a monolayer: Relating lung surfactant structure and mechan-ics to composition. Biophysical Journal 87, 4188-4202. doi:10.1529/biophysj.104.051201
Baisch, B. L., Corson, N. M., Wade-Mercer, P. et al. (2014). Equivalent titanium dioxide nanoparticle deposition by intratra-cheal instillation and whole body inhalation: The effect of dose rate on acute respiratory tract inflammation. Part Fi-bre Toxicol 11, 5. doi:10.1186/1743-8977-11-5
Barlow, H., Roy Sengupta, S., Baltazar, M. T. and Sørli, J. B. (2025). Experiments and modelling of pulmonary surfactant disruption by aerosolised compounds. Colloids and Surfaces B: Biointerfaces 248, 114482. doi:10.1016/j.colsurfb.2024.114482
Barman, S., Davidson, M. L., Walker, L. M. et al. (2020). Inflammation product effects on dilatational mechanics can trigger the laplace instability and acute respiratory distress syndrome. Soft Matter 16, 6890-6901. doi:10.1039/d0sm00415d
Beck-Broichsitter, M., Ruge, C. A. and Bohr, A. (2017). Impact of triblock copolymers on the biophysical function of natural-ly-derived lung surfactant. Colloids and Surfaces B: Biointerfaces 156, 262-269. doi:10.1016/j.colsurfb.2017.05.044
Boesewetter, D. E., Collier, J. L., Kim, A. M. and Riley, M. R. (2006). Alterations of a549 lung cell gene expression in re-sponse to biochemical toxins. Cell Biol Toxicol 22, 101-118. doi:10.1007/s10565-006-0150-9
Bouchoris, K. and Bontozoglou, V. (2021). A model of lung surfactant dynamics based on intrinsic interfacial compressibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects 624, 126839. doi:10.1016/j.colsurfa.2021.126839
Burnett, C. L., Bergfeld, W. F., Belsito, D. V. et al. (2011). Final report of the amended safety assessment of pvm/ma copol-ymer and its related salts and esters as used in cosmetics. Int J Toxicol 30, 128S-144S. doi:10.1177/1091581811407934
Bykov, A. G., Loglio, G., Miller, R. et al. (2019). Dynamic properties and relaxation processes in surface layer of pulmonary surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 573, 14-21. doi:10.1016/j.colsurfa.2019.04.032
Cao, X., Coyle, J. P., Xiong, R. et al. (2021). Invited review: Human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell Dev Biol Anim 57, 104-132. doi:10.1007/s11626-020-00517-7
Carthew, P., Fletcher, S., White, A. et al. (2006). Transcriptomic and histopathology changes in rat lung after intratracheal instillation of polymers. Inhalation Toxicology 18, 227-245. doi:10.1080/08958370500444304
Carthew, P., Clapp, C. and Gutsell, S. (2009). Exposure based waiving: The application of the toxicological threshold of concern (ttc) to inhalation exposure for aerosol ingredients in consumer products. Food Chem Toxicol 47, 1287-1295. doi:10.1016/j.fct.2009.02.024
Castillo-Sánchez, J. C., Cruz, A. and Pérez-Gil, J. (2021). Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch Biochem Biophys 703, 108850. doi:10.1016/j.abb.2021.108850
Ciuchta, H. P. and Dodd, K. T. (1978). The determination of the irritancy potential of surfactants using various methods of assessment. Drug and Chemical Toxicology 1, 305-324. doi:10.3109/01480547809105022
Clausen, P. A., Frederiksen, M., Sejbæk, C. S. et al. (2020). Chemicals inhaled from spray cleaning and disinfection prod-ucts and their respiratory effects. A comprehensive review. Int J Hyg Environ Health 229, 113592. doi:10.1016/j.ijheh.2020.113592
Clippinger, A. J., Allen, D., Behrsing, H. et al. (2018a). Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicol In Vitro 52, 131-145. doi:10.1016/j.tiv.2018.06.009
Clippinger, A. J., Allen, D., Jarabek, A. M. et al. (2018b). Alternative approaches for acute inhalation toxicity testing to ad-dress global regulatory and non-regulatory data requirements: An international workshop report. Toxicol In Vitro 48, 53-70. doi:10.1016/j.tiv.2017.12.011
Da Silva, E., Autilio, C., Hougaard, K. S. et al. (2021a). Molecular and biophysical basis for the disruption of lung surfactant function by chemicals. Biochim Biophys Acta Biomembr 1863, 183499. doi:10.1016/j.bbamem.2020.183499
Da Silva, E., Hickey, C., Ellis, G. et al. (2021b). In vitro prediction of clinical signs of respiratory toxicity in rats following inhalation exposure. Current Research in Toxicology 2, 204-209. doi:10.1016/j.crtox.2021.05.002
Da Silva, E., Vogel, U., Hougaard, K. S. et al. (2021c). An adverse outcome pathway for lung surfactant function inhibition leading to decreased lung function. Current Research in Toxicology 2, 225-236. doi:10.1016/j.crtox.2021.05.005
Damon, E. G., Halliwell, W. H., Henderson, T. R. et al. (1982). Acute toxicity of polyethylene glycol p-isooctylphenol ether in Syrian hamsters exposed by inhalation or bronchopulmonary lavage. Toxicol Appl Pharmacol 63, 53-61. doi:10.1016/0041-008x(82)90026-6
Delmaar, J. E. and Bremmer, H. J. (2009). The consexpo spray model - modelling and experimental validation of the inhala-tion exposure of consumers to aerosols from spray cans and trigger sprays. RIVM. https://www.rivm.nl/bibliotheek/rapporten/320104005.pdf
Duch, P., Nørgaard, A. W., Hansen, J. S. et al. (2014). Pulmonary toxicity following exposure to a tile coating product con-taining alkylsiloxanes. A clinical and toxicological evaluation. Clin Toxicol (Phila) 52, 498-505. doi:10.3109/15563650.2014.915412
ECHA – European Chemicals Agency (2012). Support document for identification of 4-(1,1,3,3-tetramethylbutyl)phenol, ethoxylated1 as substances of very high concern because, due to their degradation to a substance of very high concern (4-(1,1,3,3-tetramethylbutyl)phenol) with endocrine disrupting properties, they cause probable serious ef-fects to the environment which give rise to an equivalent level of concern to those of cmrs and pbts/vpvbs.
ECHA (2023). Guidance for monomers and polymers, version 3.0. doi:10.2823/933
EU – European Union (2012). Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. OJ L 167, 27.6.2012, p. 1-123 http://data.europa.eu/eli/reg/2012/528/oj
EU (2019). Commission Regulation (EU) 2019/957 of 11 June 2019 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards (3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl) silanetriol and TDFAs. OJ L 154, 12.6.2019, p. 37-39. http://data.europa.eu/eli/reg/2019/957/oj
Goros, R. A., Xu, X., Li, G. and Zuo, Y. Y. (2023). Adverse biophysical impact of e-cigarette flavors on pulmonary surfac-tant. Environ Sci Technol 57, 15882-15891. doi:10.1021/acs.est.3c05896
Graf, P. (1999). Adverse effects of benzalkonium chloride on the nasal mucosa: Allergic rhinitis and rhinitis medicamentosa. Clin Ther 21, 1749-1755. doi:10.1016/S0149-2918(99)80053-8
Graham, E., McCaig, L., Shui-Kei Lau, G. et al. (2022). E-cigarette aerosol exposure of pulmonary surfactant impairs its surface tension reducing function. PLoS One 17, e0272475. doi:10.1371/journal.pone.0272475
Hidalgo, A., Garcia-Mouton, C., Autilio, C. et al. (2021). Pulmonary surfactant and drug delivery: Vehiculization, release and targeting of surfactant/tacrolimus formulations. J Control Release 329, 205-222. doi:10.1016/j.jconrel.2020.11.042
Hougaard, K. S., Jensen, A. C. O. and Sørli, J. B. (2023). Correlation between inhibition of lung surfactant function in vitro and rapid reduction in tidal volume following exposure to plant protection products in mice. Toxicology 492, 153546. doi:10.1016/j.tox.2023.153546
Hu, G., Jiao, B., Shi, X. et al. (2013). Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona. ACS Nano 7, 10525-10533. doi:10.1021/nn4054683
Ikeda, T., Ledwith, A., Bamford, C. H. and Hann, R. A. (1984). Interaction of a polymeric biguanide biocide with phospholipid membranes. Biochim Biophys Acta 769, 57-66. doi:10.1016/0005-2736(84)90009-9
Jensen, A. C. Ø., Ebbehøj, N. E., Huusom, A. J. et al. (2024). The underlying mechanism of poisoning after the accidental inhalation of aerosolised waterproofing spray. J. Xenobiot. 14, 679-689. doi:10.3390/jox14020039
Jeon, H., Kim, D., Yoo, J. and Kwon, S. (2019). Effects of benzalkonium chloride on cell viability, inflammatory response, and oxidative stress of human alveolar epithelial cells cultured in a dynamic culture condition. Toxicol In Vitro 59, 221-227. doi:10.1016/j.tiv.2019.04.027
Johnson, N. F. (2018). Pulmonary toxicity of benzalkonium chloride. J Aerosol Med Pulm Drug Deliv 31, 1-17. doi:10.1089/jamp.2017.1390
Kanno, S., Hirano, S., Kato, H. et al. (2020). Benzalkonium chloride and cetylpyridinium chloride induce apoptosis in human lung epithelial cells and alter surface activity of pulmonary surfactant monolayers. Chem Biol Interact 317, 108962. doi:10.1016/j.cbi.2020.108962
Kim, H. R., Hwang, G. W., Naganuma, A. and Chung, K. H. (2016). Adverse health effects of humidifier disinfectants in Korea: Lung toxicity of polyhexamethylene guanidine phosphate. J Toxicol Sci 41, 711-717. doi:10.2131/jts.41.711
Kim, H. R., Shin, D. Y. and Chung, K. H. (2017). In vitro inflammatory effects of polyhexamethylene biguanide through nf-κb activation in a549 cells. Toxicol In Vitro 38, 1-7. doi:10.1016/j.tiv.2016.10.006
Kim, J. W., Jeong, M. H., Kim, G. E. et al. (2022). Comparison of 3d airway models for the assessment of fibrogenic chemi-cals. Toxicol Lett 356, 100-109. doi:10.1016/j.toxlet.2021.12.007
Kim, S. H., Kwon, D., Lee, S. et al. (2020). Concentration- and time-dependent effects of benzalkonium chloride in human lung epithelial cells: Necrosis, apoptosis, or epithelial mesenchymal transition. Toxics 8, 17. doi:10.3390/toxics8010017
Kondej, D. and Sosnowski, T. R. (2019). Interactions of carbon nanotubes and carbon nanohorns with a model membrane layer and lung surfactant in vitro. Journal of Nanomaterials 10, 9457683. doi:10.1155/2019/9457683
Kondej, D. and Sosnowski, T. R. (2020). Interfacial rheology for the assessment of potential health effects of inhaled carbon nanomaterials at variable breathing conditions. Sci Rep 10, 14044. doi:10.1038/s41598-020-70909-y
Larsen, S. T., Alarie, Y., Hammer, M. and Nielsen, G. D. (2009). Acute airway effects of diacetyl in mice. Inhal Toxicol 21, 1123-1128. doi:10.3109/08958370902795311
Larsen, S. T., Verder, H. and Nielsen, G. D. (2012). Airway effects of inhaled quaternary ammonium compounds in mice. Basic Clin Pharmacol Toxicol 110, 537-543. doi:10.1111/j.1742-7843.2011.00851.x
Larsen, S. T., Dallot, C., Larsen, S. W. et al. (2014). Mechanism of action of lung damage caused by a nanofilm spray prod-uct. Toxicol Sci 140, 436-444. doi:10.1093/toxsci/kfu098
Larsen, S. T., Jackson, P., Poulsen, S. S. et al. (2016). Airway irritation, inflammation, and toxicity in mice following inhala-tion of metal oxide nanoparticles. Nanotoxicology 10, 1254-1262. doi:10.1080/17435390.2016.1202350
Larsen, S. T., Da Silva, E., Hansen, J. S. et al. (2020). Acute inhalation toxicity after inhalation of zno nanoparticles: Lung surfactant function inhibition in vitro correlates with reduced tidal volume in mice. Int J Toxicol 39, 321-327. doi:10.1177/1091581820933146
Lee, J., Choi, S. J., Jeong, J. S. et al. (2021). A humidifier disinfectant biocide, polyhexamethylene guanidine phosphate, inhalation exposure during pregnancy induced toxicities in rats. J Hazard Mater 404, 124007. doi:10.1016/j.jhazmat.2020.124007
Lee, J. H. and Yu, I. J. (2017). Human exposure to polyhexamethylene guanidine phosphate from humidifiers in residential settings: Cause of serious lung disease. Toxicol Ind Health 33, 835-842. doi:10.1177/0748233717724983
Li, X., Zhang, J., Du, C. et al. (2021). Polyhexamethylene guanidine aerosol triggers pulmonary fibrosis concomitant with elevated surface tension via inhibiting pulmonary surfactant. Journal of Hazardous Materials 420, 126642. doi:10.1016/j.jhazmat.2021.126642
Liekkinen, J., de Santos Moreno, B., Paananen, R. O. et al. (2020). Understanding the functional properties of lipid hetero-geneity in pulmonary surfactant monolayers at the atomistic level. Front Cell Dev Biol 8, 581016. doi:10.3389/fcell.2020.581016
Lindman, B. and Nylander, T. (2017). Chapter 26 - polymer–surfactant interactions. In R. Y. L. Kazutami Sakamoto, Howard I. Maibach, Yuji Yamashita (eds.), Cosmetic Science and Technology, 449-469. doi:10.1016/B978-0-12-802005-0.00026-4
Liu, J. Y., George, I. C., Hussain, S. and Sayes, C. M. (2024). High-throughput screening of respiratory hazards: Exploring lung surfactant inhibition with 20 benchmark chemicals. Toxicology 504, 153785. doi:10.1016/j.tox.2024.153785
Lochhead, R. Y. (2017). Chapter 13 - the use of polymers in cosmetic products. Cosmetic Science and Technology, 171-221. doi:10.1016/B978-0-12-802005-0.00013-6
Lunkenheimer, K., Winsel, K., Fruhner, H. et al. (1996). Dynamic surface tension and surface area elasticity of adsorbed pulmonary surfactant layers. Colloids and Surfaces a-Physicochemical and Engineering Aspects 114, 199-210. doi:10.1016/0927-7757(96)03692-8
Mallek, N. M., Martin, E. M., Dailey, L. A. and McCullough, S. D. (2024). Liquid application dosing alters the physiology of air-liquid interface (ali) primary human bronchial epithelial cell/lung fibroblast co-cultures and in vitro testing relevant endpoints. Frontiers in Toxicology 5, doi:10.3389/ftox.2023.1264331
Nakama, Y. (2017). Chapter 15 - surfactants. Cosmetic Science and Technology, 231-244. doi:10.1016/B978-0-12-802005-0.00015-X
Nørgaard, A. W., Larsen, S. T., Hammer, M. et al. (2010a). Lung damage in mice after inhalation of nanofilm spray prod-ucts: The role of perfluorination and free hydroxyl groups. Toxicol Sci 116, 216-224. doi:10.1093/toxsci/kfq094
Nørgaard, A. W., Vaz, B. G., Lauritsen, F. R. and Eberlin, M. N. (2010b). Real-time monitoring of the progress of polymeri-zation reactions directly on surfaces at open atmosphere by ambient mass spectrometry. Rapid Communications in Mass Spectrometry 24, 3441-3446. doi:10.1002/rcm.4794
Nørgaard, A. W., Hansen, J. S., Sørli, J. B. et al. (2014). Pulmonary toxicity of perfluorinated silane-based nanofilm spray products: Solvent dependency. Toxicological Sciences 137, 179-188. doi:10.1093/toxsci/kft225
Park, S., Lee, K., Lee, E. J. et al. (2014). Humidifier disinfectant-associated interstitial lung disease in an animal model in-duced by polyhexamethylene guanidine aerosol. Am J Respir Crit Care Med 190, 706-708. doi:10.1164/rccm.201404-0710LE
Patel, V. S., Amin, K., Wahab, A. et al. (2023). Cryopreserved human precision-cut lung slices provide an immune compe-tent pulmonary test system for "on-demand" use and long-term cultures. Toxicol Sci 191, 253-265. doi:10.1093/toxsci/kfac136
Perez-Gil, J. (2008). Structure of pulmonary surfactant membranes and films: The role of proteins and lipid-protein interac-tions. Biochim Biophys Acta 1778, 1676-1695. doi:10.1016/j.bbamem.2008.05.003
Possmayer, F., Zuo, Y. Y., Veldhuizen, R. A. W. and Petersen, N. O. (2023). Pulmonary surfactant: A mighty thin film. Chem Rev 123, 13209-13290. doi:10.1021/acs.chemrev.3c00146
Ramanarayanan, T., Szarka, A., Flack, S. et al. (2022). Application of a new approach method (nam) for inhalation risk assessment. Regul Toxicol Pharmacol 133, 105216. doi:10.1016/j.yrtph.2022.105216
Ravera, F., Ferrari, M., Santini, E. and Liggieri, L. (2005). Influence of surface processes on the dilational visco-elasticity of surfactant solutions. Adv Colloid Interface Sci 117, 75-100. doi:10.1016/j.cis.2005.06.002
Ravera, F., Loglio, G. and Kovalchuk, V. I. (2010). Interfacial dilational rheology by oscillating bubble/drop methods. Current Opinion in Colloid & Interface Science 15, 217-228. doi:10.1016/j.cocis.2010.04.001
Ravera, F., Miller, R., Zuo, Y. Y. et al. (2021). Methods and models to investigate the physicochemical functionality of pul-monary surfactant. Curr Op Colloid Interface Sci 55, 101467. doi:10.1016/j.cocis.2021.101467
Ravve, A. (2012). Introduction and nomenclature. In (eds.), In: Principles of polymer chemistry. pp. 1-15. Springer New York, NY. doi:10.1007/978-1-4614-2212-9
Ritter, D., Bitsch, A., Elend, M. et al. (2018). Development and evaluation of an in vitro test system for toxicity screening of aerosols released from consumer products and first application to aerosols from a hair straightening process. Ap-plied In Vitro Toxicology 4, 180-192. doi:10.1089/aivt.2017.0036
Rogiers, V. (2017). Opinion of the scientific committee on consumer safety (sccs) - final opinion on polyaminopropyl bigua-nide (phmb) in cosmetic products - submission iii. Regul Toxicol Pharmacol 88, 328-329. doi:10.1016/j.yrtph.2017.04.013
Rovida, C., Busquet, F., Leist, M. and Hartung, T. (2023). Reach out-numbered! The future of reach and animal numbers. ALTEX 40, 367-388. doi:10.14573/altex.2307121
Sachan, A. K. and Zasadzinski, J. A. (2018). Interfacial curvature effects on the monolayer morphology and dynamics of a clinical lung surfactant. Proc Natl Acad Sci U S A 115, E134-e143. doi:10.1073/pnas.1715830115
Scientific Committee on Consumer Safety (2023). SCCS notes on guidance for the testing of cosmetic ingredients and their safety evaluation 12th revision. Corrigendum 1 adoped on 26 October 2023. https://health.ec.europa.eu/publications/sccs-notes-guidance-testing-cosmetic-ingredients-and-their-safety-evaluation-12th-revision_en
Singer, M. M. and Tjeerdema, R. S. (1993). Fate and effects of the surfactant sodium dodecyl sulfate. Rev Environ Contam Toxicol 133, 95-149. doi:10.1007/978-1-4613-9529-4_3
Song, J., Kim, W., Kim, Y. B. et al. (2018). Time course of polyhexamethyleneguanidine phosphate-induced lung inflamma-tion and fibrosis in mice. Toxicol Appl Pharmacol 345, 94-102. doi:10.1016/j.taap.2018.02.013
Song, J. A., Park, H. J., Yang, M. J. et al. (2014). Polyhexamethyleneguanidine phosphate induces severe lung inflamma-tion, fibrosis, and thymic atrophy. Food Chem Toxicol 69, 267-275. doi:10.1016/j.fct.2014.04.027
Sørli, J. B., Da Silva, E., Backman, P. et al. (2016). A proposed in vitro method to assess effects of inhaled particles on lung surfactant function. Am J Respir Cell Mol Biol 54, 306-311. doi:10.1165/rcmb.2015-0294MA
Sørli, J. B., Huang, Y., Da Silva, E. et al. (2018). Prediction of acute inhalation toxicity using in vitro lung surfactant inhibition. Altex 35, 26-36. doi:10.14573/altex.1705181
Sørli, J. B., Låg, M., Ekeren, L. et al. (2020). Per- and polyfluoroalkyl substances (pfass) modify lung surfactant function and pro-inflammatory responses in human bronchial epithelial cells. Toxicol In Vitro 62, 104656. doi:10.1016/j.tiv.2019.104656
Sørli, J. B., Sengupta, S., Jensen, A. C. O. et al. (2022). Risk assessment of consumer spray products using in vitro lung surfactant function inhibition, exposure modelling and chemical analysis. Food Chem Toxicol 164, 112999. doi:10.1016/j.fct.2022.112999
Sosnowski, T. R. (2018). Particles on the lung surface - physicochemical and hydrodynamic effects. Current Opinion in Colloid & Interface Science 36, 1-9. doi:10.1016/j.cocis.2017.12.003
Sosnowski, T. R., Jablczynska, K., Odziomek, M. et al. (2018). Physicochemical studies of direct interactions between lung surfactant and components of electronic cigarettes liquid mixtures. Inhal Toxicol 30, 159-168. doi:10.1080/08958378.2018.1478916
Stachowicz-Kuśnierz, A., Korchowiec, B., Rogalska, E. and Korchowiec, J. (2022). The lung surfactant activity probed with molecular dynamics simulations. Adv Colloid Interface Sci 304, 102659. doi:10.1016/j.cis.2022.102659
Steiling, W., Bascompta, M., Carthew, P. et al. (2014). Principle considerations for the risk assessment of sprayed consumer products. Toxicol Lett 227, 41-49. doi:10.1016/j.toxlet.2014.03.005
Swiercz, R., Hałatek, T., Wasowicz, W. et al. (2008). Pulmonary irritation after inhalation exposure to benzalkonium chloride in rats. Int J Occup Med Environ Health 21, 157-163. doi:10.2478/v10001-008-0020-1
Swiercz, R., Hałatek, T., Stetkiewicz, J. et al. (2013). Toxic effect in the lungs of rats after inhalation exposure to ben-zalkonium chloride. Int J Occup Med Environ Health 26, 647-656. doi:10.2478/s13382-013-0137-8
US EPA – Environmental Protection Agency (2018). Chlorothalonil-benchmark dose (bmd) analysis of mucilair data to es-tablish a toxicological point of departure (pod) for use in human risk assessment final report. https://www.regulations.gov/document/EPA-HQ-OPP-2018-0517-0006
Van Bavel, N., Lai, P., Amrein, M. and Prenner, E. J. (2023). Pulmonary surfactant function and molecular architecture is disrupted in the presence of vaping additives. Colloids Surf B Biointerfaces 222, 113132. doi:10.1016/j.colsurfb.2023.113132
Vrânceanu, M., Winkler, K., Nirschl, H. and Leneweit, G. (2007). Surface rheology of monolayers of phospholipids and cho-lesterol measured with axisymmetric drop shape analysis. Colloids and Surfaces A: Physicochemical and Engi-neering Aspects 311, 140-153. doi:10.1016/j.colsurfa.2007.06.008
Welch, J., Wallace, J., Lansley, A. B. and Roper, C. (2021). Evaluation of the toxicity of sodium dodecyl sulphate (sds) in the mucilair human airway model in vitro. Regul Toxicol Pharmacol 125, 105022. doi:10.1016/j.yrtph.2021.105022
Wong, K. L. and Alarie, Y. (1982). A method for repeated evaluation of pulmonary performance in unanesthetized, unre-strained guinea pigs and its application to detect effects of sulfuric acid mist inhalation. Toxicol Appl Pharmacol 63, 72-90. doi:10.1016/0041-008x(82)90028-x
Wüstneck, N., Wüstneck, R., Fainerman, V. B. et al. (2001). Interfacial behaviour and mechanical properties of spread lung surfactant protein/lipid layers. Colloids and Surfaces B: Biointerfaces doi:10.1016/S0927-7765(01)00172-2
Wüstneck, R., Perez-Gil, J., Wüstneck, N. et al. (2005). Interfacial properties of pulmonary surfactant layers. Adv Colloid Interface Sci 117, 33-58. doi:10.1016/j.cis.2005.05.001
Xu, L., Yang, Y., Simien, J. M. et al. (2022). Menthol in electronic cigarettes causes biophysical inhibition of pulmonary sur-factant. Am J Physiol Lung Cell Mol Physiol 323, L165-L177. doi:10.1152/ajplung.00015.2022
Xu, X., Goros, R. A., Dong, Z. et al. (2023). Microplastics and nanoplastics impair the biophysical function of pulmonary surfactant by forming heteroaggregates at the alveolar-capillary interface. Environ Sci Technol 57, 21050-21060. doi:10.1021/acs.est.3c06668
Yang, H. S., Yang, M., Kang, M. et al. (2023). Inhalation toxicity of polyhexamethylene guanidine-phosphate in rats: A 4-week inhalation exposure and 24-week recovery period study. Chemosphere 312, 137232. doi:10.1016/j.chemosphere.2022.137232
Yang, J., Yu, K., Tsuji, T. et al. (2019). Determining the surface dilational rheology of surfactant and protein films with a droplet waveform generator. J Colloid Interface Sci 537, 547-553. doi:10.1016/j.jcis.2018.11.054
Yu, K., Yang, J. and Zuo, Y. Y. (2016). Automated droplet manipulation using closed-loop axisymmetric drop shape analysis. Langmuir 32, 4820-4826. doi:10.1021/acs.langmuir.6b01215
Zasadzinski, J. A., Stenger, P. C., Shieh, I. and Dhar, P. (2010). Overcoming rapid inactivation of lung surfactant: Analogies between competitive adsorption and colloid stability. Biochim Biophys Acta 1798, 801-828. doi:10.1016/j.bbamem.2009.12.010
Zelenak, J. P., Alarie, Y. and Weyel, D. A. (1982). Assessment of the cough reflex caused by inhalation of sodium lauryl sulfate and citric acid aerosols. Fundam Appl Toxicol 2, 177-180. doi:10.1016/s0272-0590(82)80043-2