State of the science on assessing developmental neurotoxicity using new approach methods
Main Article Content
Abstract
The workshop titled State of the Science on Assessing Developmental Neurotoxicity Using New Approach Methods was co-organized by University of Maryland’s Joint Institute for Food Safety and Applied Nutrition (JIFSAN) and the U.S. Food and Drug Administration’s (FDA) Center for Food Safety and Applied Nutrition (CFSAN; now called the Human Foods Program), and was hosted by FDA in College Park, MD on November 14-15, 2023. This event convened experts from international organizations, governmental agencies, industry, and academia to explore the transition from traditional in vivo tests to innovative new approach methods (NAMs) in developmental neurotoxicity (DNT) testing. The discussions emphasized the heightened vulnerability of the developing human brain to toxic exposures and the potential of NAMs to provide more ethical, economical, and scientifically robust alternatives to traditional testing. Various NAMs for DNT were discussed, including in silico, in chemico, in vitro, non-mammalian whole organisms, and novel mammalian approaches. In addition to progress in the field, the workshop discussed ongoing challenges such as expectations to perfectly replicate the complex biology of human neurodevelopment and integration of DNT NAMs into regulatory frameworks. Presentations and panel discussions provided a comprehensive overview of the state of the science, assessed the capabilities and limitations of current DNT NAMs, and outlined critical next steps in advancing the field of DNT testing.
Plain language summary
Chemicals present in the environment that result in human exposure may alter key biological processes during the development of the human brain. This may contribute to learning disabilities, behavioral disorders, and neurological impairments that are associated with conditions such as autism and attention deficit hyperactivity disorder. Only a few chemicals have been evaluated for such effects in animals, and it is unclear how well animal studies predict human conditions. The workshop brought together stakeholders from international organizations, governmental agencies, industry, and academia to discuss the transition to non-animal tests and other novel approaches to evaluate potential neurodevelopmental effects of chemicals which are more ethical and provide more human-relevant information. The capabilities and limitations of current alternative tests were discussed, and critical next steps to advance the field were outlined.
Article Details
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Abbasi, J. (2016). Call to action on neurotoxin exposure in pregnant women and children. JAMA 316, 1436. doi:10.1001/jama.2016.11576
Altman, J. and Bayer, S. (2015). Development of the Human Neocortex – A review and interpretation of the histological record. The Laboratory of Developmental Neurobiology, Inc. https://neurondevelopment.org/wp-content/uploads/2015/11/human-neocortical-development-complete.pdf
Anderson, W. A., Bosak, A., Hogberg, H. T. et al. (2021). Advances in 3D neuronal microphysiological systems: Towards a functional nervous system on a chip. In Vitro Cell Dev Biol Anim 57, 191-206. doi:10.1007/s11626-020-00532-8
Ankley, G. T., Bennett, R. S., Erickson, R. J. et al. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29, 730-741. doi:10.1002/etc.34
Ansorge, M. S., Morelli, E. and Gingrich, J. A. (2008). Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 28, 199-207. doi:10.1523/jneurosci.3973-07.2008
Bakker, J. (2022). The role of steroid hormones in the sexual differentiation of the human brain. J Neuroendocrinol 34, e13050. doi:10.1111/jne.13050
Bal-Price, A., Crofton, K. M., Leist, M. et al. (2015). International STakeholder NETwork (ISTNET): Creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch Toxicol 89, 269-287. doi:10.1007/s00204-015-1464-2
Bal-Price, A., Hogberg, H. T., Crofton, K. M. et al. (2018). Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX 35, 306-352. doi:10.14573/altex.1712081
Bartmann, K., Bendt, F., Dönmez, A. et al. (2023). A human iPSC-based in vitro neural network formation assay to investigate neurodevelopmental toxicity of pesticides. ALTEX 40, 452-470. doi:10.14573/altex.2206031
Blum, J., Masjosthusmann, S., Bartmann, K. et al. (2023). Establishment of a human cell-based in vitro battery to assess developmental neurotoxicity hazard of chemicals. Chemosphere 311, 137035. doi:10.1016/j.chemosphere.2022.137035
Boutin, M. E., Strong, C. E., Van Hese, B. et al. (2022). A multiparametric calcium signal screening platform using iPSC-derived cortical neural spheroids. SLAS Discov 27, 209-218. doi:10.1016/j.slasd.2022.01.003
Bruni, G., Rennekamp, A. J., Velenich, A. et al. (2016). Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat Chem Biol 12, 559-566. doi:10.1038/nchembio.2097
Butera, A., Smirnova, L., Ferrando‐May, E. et al. (2023). Deconvoluting gene and environment interactions to develop an “epigenetic score meter” of disease. EMBO Mol Med 15, e18208. doi:10.15252/emmm.202318208
Cai, H., Ao, Z., Tian, C. et al. (2023). Brain organoid reservoir computing for artificial intelligence. Nat Electron 6, 1032-1039. doi:10.1038/s41928-023-01069-w
Carstens, K. E., Carpenter, A. F., Martin, M. M. et al. (2022). Integrating data from in vitro new approach methodologies for developmental neurotoxicity. Toxicol Sci 187, 62-79. doi:10.1093/toxsci/kfac018
Chen, S.-W., Hung, Y.-S., Fuh, J.-L. et al. (2021). Efficient conversion of human induced pluripotent stem cells into microglia by defined transcription factors. Stem Cell Reports 16, 1363-1380. doi:10.1016/j.stemcr.2021.03.010
Cheroni, C., Trattaro, S., Caporale, N. et al. (2022). Benchmarking brain organoid recapitulation of fetal corticogenesis. Transl Psychiatry 12, 520. doi:10.1038/s41398-022-02279-0
Chesnut, M., Hartung, T., Hogberg, H. et al. (2021a). Human oligodendrocytes and myelin in vitro to evaluate developmental neurotoxicity. Int J Mol Sci 22, 7929. doi:10.3390/ijms22157929
Chesnut, M., Paschoud, H., Repond, C. et al. (2021b). Human iPSC-derived model to study myelin disruption. Int J Mol Sci 22, 9473. doi:10.3390/ijms22179473
Crofton, K. M., Gilbert, M., Paul Friedman, K. et al. (2019). Adverse outcome pathway on inhibition of thyroperoxidase and subsequent adverse neurodevelopmental outcomes in mammals. OECD Series on Adverse Outcome Pathways, No. 13. OECD Publishing, Paris. doi:10.1787/ea5aa069-en
Crofton, K. M. and Mundy, W. R. (2021). External scientific report on the interpretation of data from the developmental neurotoxicity in vitro testing assays for use in integrated approaches for testing and assessment. EFSA Support Publ 18, 6924E. doi:10.2903/sp.efsa.2021.en-6924
De Castelbajac, T., Aiello, K., Arenas, C. G. et al. (2023). Innovative tools and methods for toxicity testing within PARC work package 5 on hazard assessment. Front Toxicol 5, 1216369. doi:10.3389/ftox.2023.1216369
De Farias, N. O., Oliveira, R., Sousa-Moura, D. et al. (2019). Exposure to low concentration of fluoxetine affects development, behaviour and acetylcholinesterase activity of zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 215, 1-8. doi:10.1016/j.cbpc.2018.08.009
Dobreniecki, S., Mendez, E., Lowit, A. et al. (2022). Integration of toxicodynamic and toxicokinetic new approach methods into a weight-of-evidence analysis for pesticide developmental neurotoxicity assessment: A case-study with DL- and L-glufosinate. Regul Toxicol Pharmacol 131, 105167. doi:10.1016/j.yrtph.2022.105167
EFSA Panel on Plant Protection Products and their Residues (EFSA PPR Panel), Hernández‐Jerez, A., Adriaanse, P. et al. (2021). Development of integrated approaches to testing and assessment (IATA) case studies on developmental neurotoxicity (DNT) risk assessment. EFSA J 19, e06599. doi:10.2903/j.efsa.2021.6599
Engdahl, E., Svensson, K., Lin, P.-I. D. et al. (2021). DNA methylation at GRIN2B partially mediates the association between prenatal bisphenol F exposure and cognitive functions in 7-year-old children in the SELMA study. Environ Int 156, 106617. doi:10.1016/j.envint.2021.106617
EPA – Environmental Protection Agency (2020). Agency Issue Paper: Use of New Approach Methodologies to Derive Extrapolation Factors and Evaluate Developmental Neurotoxicity for Human Health Risk Assessment. https://www.regulations.gov/document/epa-hq-opp-2020-0263-0006
EPA (2022). DCNA: Summary of Hazard and Science Policy Council (HASPOC) Meeting on February 17, 2022: Recommendation on the Need for a Developmental Neurotoxicity Study. https://www.regulations.gov/document/epa-hq-opp-2016-0141-0033
EPA (2023a). Response to the Final Report of the Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel (FIFRA SAP) on the Use of New Approach Methodologies to Derive Extrapolation Factors and Evaluate Developmental Neurotoxicity for Human Health Risk Assessment. https://www.regulations.gov/document/epa-hq-opp-2020-0263-0057
EPA (2023b). Approach for Evaluating Developmental Neurotoxicity Potential for the Organophosphate Pesticides. https://www.regulations.gov/document/epa-hq-opp-2008-0915-0056
EPA (2023c). Evaluation of the Developmental Neurotoxicity Potential of Acephate/Methamidophos to Inform the FQPA Safety Factor. https://www.regulations.gov/document/epa-hq-opp-2008-0915-0057
Eriksson, P. (1997). Developmental neurotoxicity of environmental agents in the neonate. Neurotoxicology 18, 719-726.
Fan, X., Tang, D., Liao, Y. et al. (2020). Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing. PLoS Biol 18, e3001017. doi:10.1371/journal.pbio.3001017.foti
Feshuk, M., Kolaczkowski, L., Dunham, K. et al. (2023). The ToxCast pipeline: Updates to curve-fitting approaches and database structure. Front Toxicol 5, 1275980. doi:10.3389/ftox.2023.1275980
Fisher, J. E., Ravindran, A. and Elayan, I. (2019). CDER experience with juvenile animal studies for CNS drugs. Int J Toxicol 38, 88-95. doi:10.1177/1091581818824313
Förster, N., Butke, J., Keßel, H. E. et al. (2022). Reliable identification and quantification of neural cells in microscopic images of neurospheres. Cytometry A 101, 411-422. doi:10.1002/cyto.a.24514
Foti, S. B., Chou, A., Moll, A. D. et al. (2013). HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain. Int J Dev Neurosci 31, 434-447. doi:10.1016/j.ijdevneu.2013.03.008
Frank, C. L., Brown, J. P., Wallace, K. et al. (2018). Defining toxicological tipping points in neuronal network development. Toxicol Appl Pharmacol 354, 81-93. doi:10.1016/j.taap.2018.01.017
Fritsche, E., Crofton, K. M., Hernandez, A. F. et al. (2017). OECD/EFSA workshop on developmental neurotoxicity (DNT): The use of non-animal test methods for regulatory purposes. ALTEX 34, 311-315. doi:10.14573/altex.1701171
Fritsche, E., Barenys, M., Klose, J. et al. (2018). Development of the concept for stem cell-based developmental neurotoxicity evaluation. Toxicol Sci 165, 14-20. doi:10.1093/toxsci/kfy175
Geng, Y. and Peterson, R. T. (2019). The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 12, dmm039446. doi:10.1242/dmm.039446
Geng, Y., Zhang, T., Alonzo, I. G. et al. (2022). Top2a promotes the development of social behavior via PRC2 and H3K27me3. Sci Adv 8, eabm7069. doi:10.1126/sciadv.abm7069
Geng, Y., Yates, C. and Peterson, R. T. (2023). Social behavioral profiling by unsupervised deep learning reveals a stimulative effect of dopamine D3 agonists on zebrafish sociality. Cell Rep Methods 3, 100381. doi:10.1016/j.crmeth.2022.100381
Go, H. S., Kim, K. C., Choi, C. S. et al. (2012). Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3β/β-catenin pathway. Neuropharmacology 63, 1028-1041. doi:10.1016/j.neuropharm.2012.07.028
Goodman, C. V., Green, R., DaCosta, A. et al. (2023). Sex difference of pre- and post-natal exposure to six developmental neurotoxicants on intellectual abilities: A systematic review and meta-analysis of human studies. Environ Health 22, 80. doi:10.1186/s12940-023-01029-z
Grandjean, P. and Landrigan, P. J. (2014). Neurobehavioural effects of developmental toxicity. Lancet Neurol 13, 330-338. doi:10.1016/S1474-4422(13)70278-3
Hale, S. L., Andrews-Jones, L., Jordan, W. H. et al. (2011). Modern pathology methods for neural investigations. Toxicol Pathol 39, 52-57. doi:10.1177/0192623310394213
Hansen, S. N., Schendel, D. E. and Parner, E. T. (2015). Explaining the increase in the prevalence of autism spectrum disorders: The proportion attributable to changes in reporting practices. JAMA Pediatr 169, 56-62. doi:10.1001/jamapediatrics.2014.1893
Hartmann, J., Henschel, N., Bartmann, K. et al. (2023a). Molecular and functional characterization of different BrainSphere models for use in neurotoxicity testing on microelectrode arrays. Cells 12, 1270. doi:10.3390/cells12091270
Hartmann, J., Lauria, I., Bendt, F. et al. (2023b). Alginate‐laminin hydrogel supports long‐term neuronal activity in 3D human induced pluripotent stem cell‐derived neuronal networks. Adv Materials Inter 10, 2200580. doi:10.1002/admi.202200580
Hartung, T. (2023). ToxAIcology – The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. ALTEX 40, 559-570. doi:10.14573/altex.2309191
Hong, Y., Sourander, C., Hackl, B. et al. (2024). Jnk1 and downstream signalling hubs regulate anxiety-like behaviours in a zebrafish larvae phenotypic screen. Sci Rep 14, 11174. doi:10.1038/s41598-024-61337-3
Howe, K., Clark, M. D., Torroja, C. F. et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503. doi:10.1038/nature12111
Huang, Q., Tang, B., Romero, J. C. et al. (2022). Shell microelectrode arrays (MEAs) for brain organoids. Sci Adv 8, eabq5031. doi:10.1126/sciadv.abq5031
Insel, T. R. (2010). Rethinking schizophrenia. Nature 468, 187-193. doi:10.1038/nature09552
Jaylet, T., Coustillet, T., Smith, N. M. et al. (2024). Comprehensive mapping of the AOP-Wiki database: Identifying biological and disease gaps. Front Toxicol 6, 1285768. doi:10.3389/ftox.2024.1285768
Jordi, J., Guggiana-Nilo, D., Soucy, E. et al. (2015). A high-throughput assay for quantifying appetite and digestive dynamics. Am J Physiol Regul Integr Comp Physiol 309, R345-357. doi:10.1152/ajpregu.00225.2015
Jordi, J., Guggiana-Nilo, D., Bolton, A. D. et al. (2018). High-throughput screening for selective appetite modulators: A multibehavioral and translational drug discovery strategy. Sci Adv 4, eaav1966. doi:10.1126/sciadv.aav1966
Juberg, D. R., Fox, D. A., Forcelli, P. A. et al. (2023). A perspective on in vitro developmental neurotoxicity test assay results: An expert panel review. Regul Toxicol Pharmacol 143, 105444. doi:10.1016/j.yrtph.2023.105444
Judson, R., Richard, A., Dix, D. J. et al. (2009). The toxicity data landscape for environmental chemicals. Environ Health Perspect 117, 685-695. doi:10.1289/ehp.0800168
Kagan, B. J., Kitchen, A. C., Tran, N. T. et al. (2022). In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron 110, 3952-3969.e8. doi:10.1016/j.neuron.2022.09.001
Kanungo, J., Twaddle, N. C., Silva, C. et al. (2023). Inorganic arsenic alters the development of dopaminergic neurons but not serotonergic neurons and induces motor neuron development via Sonic hedgehog pathway in zebrafish. Neurosci Lett 795, 137042. doi:10.1016/j.neulet.2022.137042
Kern, J. K., Geier, D. A., Homme, K. G. et al. (2017). Developmental neurotoxicants and the vulnerable male brain: A systematic review of suspected neurotoxicants that disproportionally affect males. Acta Neurobiol Exp (Wars) 77, 269-296.
Keßel, H. E., Masjosthusmann, S., Bartmann, K. et al. (2023). The impact of biostatistics on hazard characterization using in vitro developmental neurotoxicity assays. ALTEX 40, 619-634. doi:10.14573/altex.2210171
King, M. and Bearman, P. (2009). Diagnostic change and the increased prevalence of autism. Int J Epidemiol 38, 1224-1234. doi:10.1093/ije/dyp261
Klose, J., Tigges, J., Masjosthusmann, S. et al. (2021). TBBPA targets converging key events of human oligodendrocyte development resulting in two novel AOPs. ALTEX 38, 215-234. doi:10.14573/altex.2007201
Klose, J., Li, L., Pahl, M. et al. (2023). Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol 39, 319-343. doi:10.1007/s10565-022-09730-4
Koch, K., Bartmann, K., Hartmann, J. et al. (2022). Scientific validation of human neurosphere assays for developmental neurotoxicity evaluation. Front Toxicol 4, 816370. doi:10.3389/ftox.2022.816370
Kokel, D., Bryan, J., Laggner, C. et al. (2010). Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6, 231-237. doi:10.1038/nchembio.307
Krebs, A., Waldmann, T., Wilks, M. F. et al. (2019). Template for the description of cell-based toxicological test methods to allow evaluation and regulatory use of the data. ALTEX 36, 682-699. doi:10.14573/altex.1909271
Kreutz, A., Oyetade, O. B., Chang, X. et al. (2024). Integrated approach for testing and assessment for developmental neurotoxicity (DNT) to prioritize aromatic organophosphorus flame retardants. Toxics 12, 437. doi:10.3390/toxics12060437
Kwan, L. Y., Eaton, D. L., Andersen, S. L. et al. (2020). This is your teen brain on drugs: In search of biological factors unique to dependence toxicity in adolescence. Neurotoxicol Teratol 81, 106916. doi:10.1016/j.ntt.2020.106916
Labusch, M., Mancini, L., Morizet, D. et al. (2020). Conserved and divergent features of adult neurogenesis in zebrafish. Front Cell Dev Biol 8, 525. doi:10.3389/fcell.2020.00525
Liachenko, S., Ramu, J., Paule, M. G. et al. (2023). Performance of the prospective T2 MRI biomarker of neurotoxicity in a trimethyltin model in rats at 7 T. Neurotoxicol Teratol 100, 107289. doi:10.1016/j.ntt.2023.107289
Lupu, D., Andersson, P., Bornehag, C.-G. et al. (2020). The ENDpoiNTs project: Novel testing strategies for endocrine disruptors linked to developmental neurotoxicity. Int J Mol Sci 21, 3978. doi:10.3390/ijms21113978
Marable, C. A., Frank, C. L., Seim, R. F. et al. (2022). Integrated omic analyses identify pathways and transcriptomic regulators associated with chemical alterations of in vitro neural network formation. Toxicol Sci 186, 118-133. doi:10.1093/toxsci/kfab151
Marx, U., Andersson, T. B., Bahinski, A. et al. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272-321. doi:10.14573/altex.1603161
Marx, U., Akabane, T., Andersson, T. B. et al. (2020). Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 37, 365-394. doi:10.14573/altex.2001241
Masjosthusmann, S., Blum, J., Bartmann, K. et al. (2020). Establishment of an a priori protocol for the implementation and interpretation of an in‐vitro testing battery for the assessment of developmental neurotoxicity. EFSA Support Publ 17, 1938E. doi:10.2903/sp.efsa.2020.en-1938
McCarthy M. M. (2016). Sex differences in the developing brain as a source of inherent risk. Dialogues Clin Neurosci 18, 361-372. doi:10.31887/dcns.2016.18.4/mmccarthy
Modabbernia, A., Velthorst, E. and Reichenbert, A. (2017). Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol Autism 8, 13. doi:10.1186/s13229-017-0121-4
Modafferi, S., Zhong, X., Kleensang, A. et al. (2021). Gene-environment interactions in developmental neurotoxicity: A case study of synergy between chlorpyrifos and CHD8 knockout in human BrainSpheres. Environ Health Perspect 129, 077001. doi:10.1289/ehp8580
Müller, T. C., Rocha, J. B. T., Morsch, V. M. et al. (2002). Antidepressants inhibit human acetylcholinesterase and butyrylcholinesterase activity. Biochim Biophys Acta 1587, 92-98. doi:10.1016/s0925-4439(02)00071-6
Nyffeler, J., Karreman, C., Leisner, H. et al. (2017). Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants. ALTEX 34, 75-94. doi:10.14573/altex.1605031
OECD (2007). Test No. 426: Developmental Neurotoxicity Study. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. doi:10.1787/9789264067394-en
OECD (2011). Report of the Workshop on Using Mechanistic Information in Forming Chemical Categories. OECD Series on Testing and Assessment, No. 138. https://one.oecd.org/document/env/jm/mono(2011)8/en/pdf
OECD (2016). Guidance Document for the Use of Adverse Outcome Pathways in Developing Integrated Approaches to Testing and Assessment (IATA). OECD Series on Testing and Assessment, No. 260. https://one.oecd.org/document/env/jm/mono(2016)67/en/pdf
OECD (2017). Guidance on Grouping of Chemicals, Second Edition. OECD Series on Testing and Assessment, No. 194. OECD Publishing, Paris. doi:10.1787/9789264274679-en
OECD (2018). Test No. 443: Extended One-Generation Reproductive Toxicity Study. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. doi:10.1787/9789264185371-en
OECD (2022a). Case Study on the Use of Integrated Approaches for Testing and Assessment for DNT to Prioritize a Class of Organophosphorus Flame Retardants. OECD Series on Testing and Assessment, No. 364. OECD Publishing, Paris. https://one.oecd.org/document/env/cbc/mono(2022)26/en/pdf
OECD (2022b). Case Study for the Integration of In Vitro Data in the Developmental Neurotoxicity Hazard Identification and Characterisation Using Deltamethrin as a Prototype Chemical. OECD Series on Testing and Assessment, No. 362. OECD Publishing, Paris. https://one.oecd.org/document/ENV/CBC/MONO(2022)24/en/pdf
OECD (2022c). Case study for the integration of in vitro data in the developmental neurotoxicity hazard identification and characterization using flufenacet as a prototype chemical. OECD Series on Testing and Assessment, No. 363. OECD Publishing, Paris. https://one.oecd.org/document/ENV/CBC/MONO(2022)25/en/pdf
OECD (2022d). Case Study on the Use of Integrated Approaches for Testing and Assessment for Developmental Neurotoxicity Hazard Characterisation of Acetamiprid. OECD Series on Testing and Assessment, No. 365. OECD Publishing, Paris. https://one.oecd.org/document/ENV/CBC/MONO(2022)27/en/pdf
OECD (2023). Initial Recommendations on Evaluation of Data from the Developmental Neurotoxicity (DNT) In-Vitro Testing Battery. OECD Series on Testing and Assessment, No. 377. OECD Publishing, Paris. https://one.oecd.org/document/env/cbc/mono(2023)13/en/pdf
Olivier, J. D. A., Vallès, A., Van Heesch, F. et al. (2011). Fluoxetine administration to pregnant rats increases anxiety-related behavior in the offspring. Psychopharmacology 217, 419-432. doi:10.1007/s00213-011-2299-z
Olney, J. W. (2002). New insights and new issues in developmental neurotoxicology. Neurotoxicology 23, 659-668. doi:10.1016/S0161-813X(01)00092-4
Pamies, D., Barreras, P., Block, K. et al. (2017). A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX 34, 362-376. doi:10.14573/altex.1609122
Pamies, D., Block, K., Lau, P. et al. (2018). Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol Appl Pharmacol 354, 101-114. doi:10.1016/j.taap.2018.02.003
Pamies, D., Vujić, T., Schvartz, D. et al. (2023). Digoxin induces human astrocyte reaction in vitro. Mol Neurobiol 60, 84-97. doi:10.1007/s12035-022-03057-1
Paparella, M., Bennekou, S. H. and Bal-Price, A. (2020). An analysis of the limitations and uncertainties of in vivo developmental neurotoxicity testing and assessment to identify the potential for alternative approaches. Reprod Toxicol 96, 327-336. doi:10.1016/j.reprotox.2020.08.002
Pinares-Garcia, P., Stratikopoulos, M., Zagato, A. et al. (2018). Sex: A significant risk factor for neurodevelopmental and neurodegenerative disorders. Brain Sciences 8, 154. doi:10.3390/brainsci8080154
Pistollato, F., de Gyves, E. M., Carpi, D. et al. (2020). Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Environ Health 19, 23. doi:10.1186/s12940-020-00578-x
Pitzer, E. M., Shafer, T. J. and Herr, D. W. (2023). Identification of neurotoxicology (NT)/developmental neurotoxicology (DNT) adverse outcome pathways and key event linkages with in vitro DNT screening assays. Neurotoxicology 99, 184-194. doi:10.1016/j.neuro.2023.10.007
Quevedo, C., Behl, M., Ryan, K. et al. (2019). Detection and prioritization of developmentally neurotoxic and/or neurotoxic compounds using zebrafish. Toxicol Sci 168, 225-240. doi:10.1093/toxsci/kfy291
Raffaele, K. C., Fisher, J. E., Hancock, S. et al. (2008). Determining normal variability in a developmental neurotoxicity test: A report from the ILSI research foundation/risk science institute expert working group on neurodevelopmental endpoints. Neurotoxicol Teratol 30, 288-325. doi:10.1016/j.ntt.2007.12.009
Rao, D. B., Little, P. B. and Sills, R. C. (2014). Subsite awareness in neuropathology evaluation of national toxicology program (NTP) studies: A review of select neuroanatomical structures with their functional significance in rodents. Toxicol Pathol 42, 487-509. doi:10.1177/0192623313501893
Reich, M., Paris, I., Ebeling, M. et al. (2021). Alzheimer’s risk gene TREM2 determines functional properties of new type of human iPSC-derived microglia. Front Immunol 11, 617860. doi:10.3389/fimmu.2020.617860
Rennekamp, A. J., Huang, X.-P., Wang, Y. et al. (2016). σ1 receptor ligands control a switch between passive and active threat responses. Nat Chem Biol 12, 552-558. doi:10.1038/nchembio.2089
Rericha, Y., Cao, D., Truong, L. et al. (2022). Sulfonamide functional head on short-chain perfluorinated substance drives developmental toxicity. iScience 25, 103789. doi:10.1016/j.isci.2022.103789
Rihel, J., Prober, D. A., Arvanites, A. et al. (2010). Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327, 348-351. doi:10.1126/science.1183090
Robinson, R. T., Drafts, B. C. and Fisher, J. L. (2003). Fluoxetine increases GABA(A) receptor activity through a novel modulatory site. J Pharmacol Exp Ther 304, 978-984. doi:10.1124/jpet.102.044834
Rolaki, A., Pistollato, F., Munn, S. and Bal-Price, A. (2019). Adverse outcome pathway on inhibition of Na+/I- symporter (NIS) leads to learning and memory impairment. OECD Series on Adverse Outcome Pathways, No. 14. OECD Publishing, Paris. doi:10.1787/7ca86a34-en
Romero, J. C., Berlinicke, C., Chow, S. et al. (2023). Oligodendrogenesis and myelination tracing in a CRISPR/Cas9-engineered brain microphysiological system. Front Cell Neurosci 16, 1094291. doi:10.3389/fncel.2022.1094291
Roth, A. and MPS-WS Berlin 2019 (2021). Human microphysiological systems for drug development. Science 373, 1304-1306. doi:10.1126/science.abc3734
Rude, C. I., Wilson, L. B., La Du, J. et al. (2024). Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence. Toxicol Sci 202, 50-68. doi:10.1093/toxsci/kfae098
Sachana, M., Munn, S. and Bal-Price, A. (2016). Adverse outcome pathway on chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities. OECD Series on Adverse Outcome Pathways, No. 5. OECD Publishing, Paris. doi:10.1787/5jlsqs5hcrmq-en
Sachana, M., Bal-Price, A., Crofton, K. M. et al. (2019). International regulatory and scientific effort for improved developmental neurotoxicity testing. Toxicol Sci 167, 45-57. doi:10.1093/toxsci/kfy211
Sachana, M., Willett, C., Pistollato, F. et al. (2021). The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays. Reprod Toxicol 103, 159-170. doi:10.1016/j.reprotox.2021.06.006
Santoro, M. M. (2014). Zebrafish as a model to explore cell metabolism. Trends Endocrinol Metab 25, 546-554. doi:10.1016/j.tem.2014.06.003
Schaafsma, S. M., Gagnidze, K., Reyes, A. et al. (2017). Sex-specific gene-environment interactions underlying ASD-like behaviors. Proc Natl Acad Sci USA 114, 1383-1388. doi:10.1073/pnas.1619312114
Schmuck, M. R., Temme, T., Dach, K. et al. (2017). Omnisphero: A high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro. Arch Toxicol 91, 2017-2028. doi:10.1007/s00204-016-1852-2
Seth, A., Stemple, D. L. and Barroso, I. (2013). The emerging use of zebrafish to model metabolic disease. Dis Model Mech 6, 1080-1088. doi:10.1242/dmm.011346
Shenoy, A., Banerjee, M., Upadhya, A. et al. (2022). The brilliance of the zebrafish model: Perception on behavior and Alzheimer’s disease. Front Behav Neurosci 16, 861155. https://www.frontiersin.org/articles/10.3389/fnbeh.2022.861155
Silbereis, J. C., Pochareddy, S., Zhu, Y. et al. (2016). The cellular and molecular landscapes of the developing human central nervous system. Neuron 89, 248-268. doi:10.1016/j.neuron.2015.12.008
Smirnova, L., Hogberg, H. T., Leist, M. et al. (2014). Developmental neurotoxicity – Challenges in the 21st century and in vitro opportunities. ALTEX 31, 129-156. doi:10.14573/altex.1403271
Smirnova, L., Morales Pantoja, I. E. and Hartung, T. (2023a). Organoid intelligence (OI) – The ultimate functionality of a brain microphysiological system. ALTEX 40, 191-203. doi:10.14573/altex.2303261
Smirnova, L., Caffo, B. S., Gracias, D. H. et al. (2023b). Organoid intelligence (OI): The new frontier in biocomputing and intelligence-in-a-dish. Front Sci 1, 1017235. doi:10.3389/fsci.2023.1017235
Smirnova, L. and Hartung, T. (2024). The promise and potential of brain organoids. Adv Healthc Mater 13, e2302745. doi:10.1002/adhm.202302745
Smirnova, L., Hogberg, H. T., Leist, M. et al. (2024a). Revolutionizing developmental neurotoxicity testing – A journey from animal models to advanced in vitro systems. ALTEX 41, 152-178. doi:10.14573/altex.2403281
Smirnova, L., Modafferi, S., Schlett, C. et al. (2024b). Blood extracellular vesicles carrying brain-specific mRNAs are potential biomarkers for detecting gene expression changes in the female brain. Mol Psychiatry 29, 962-973. doi:10.1038/s41380-023-02384-6
Spînu, N., Bal-Price, A., Cronin, M. T. D. et al. (2019). Development and analysis of an adverse outcome pathway network for human neurotoxicity. Arch Toxicol 93, 2759-2772. doi:10.1007/s00204-019-02551-1
Spînu, N., Cronin, M. T. D., Lao, J. et al. (2022). Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network. Comput Toxicol 21, 100206. doi:10.1016/j.comtox.2021.100206
Spreng, A.-S., Brüll, M., Leisner, H. et al. (2022). Distinct and dynamic transcriptome adaptations of iPSC-generated astrocytes after cytokine stimulation. Cells 11, 2644. doi:10.3390/cells11172644
St. Mary, L., Truong, L., Bieberich, A. A. et al. (2023). Comparative analysis between zebrafish and an automated live-cell assay to classify developmental neurotoxicant chemicals. Toxicol Appl Pharmacol 476, 116659. doi:10.1016/j.taap.2023.116659
Stowell, N. C., Goel, T., Shetty, V. et al. (2021). Quantifying planarian behavior as an introduction to object tracking and signal processing. The Biophysicist 2, 1-17. doi:10.35459/tbp.2020.000159
Strong, C. E., Zhang, J., Carrasco, M. et al. (2023). Functional brain region-specific neural spheroids for modeling neurological diseases and therapeutics screening. Commun Biol 6, 1211. doi:10.1038/s42003-023-05582-8
Suciu, I., Pamies, D., Peruzzo, R. et al. (2023). G × E interactions as a basis for toxicological uncertainty. Arch Toxicol 97, 2035-2049. doi:10.1007/s00204-023-03500-9
Tal, T., Myhre, O., Fritsche, E. et al. (2024). New approach methods to assess developmental and adult neurotoxicity for regulatory use: A PARC work package 5 project. Front Toxicol 6, 1359507. doi:10.3389/ftox.2024.1359507
Tomitaka, S., Tomitaka, M., Tolliver, B. K. et al. (2000). Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK‐801) injures pyramidal neurons in rat retrosplenial cortex. Eur J Neurosci 12, 1420-1430. doi:10.1046/j.1460-9568.2000.00018.x
Torres-Rojas, C. and Jones, B. C. (2018). Sex differences in neurotoxicogenetics. Front Genet 9, 196. doi:10.3389/fgene.2018.00196
Truong, L., Rericha, Y., Thunga, P. et al. (2022). Systematic developmental toxicity assessment of a structurally diverse library of PFAS in zebrafish. J Hazard Mater 431, 128615. doi:10.1016/j.jhazmat.2022.128615
Tschudi-Monnet, F. and FitzGerald, R. (2018). Adverse outcome pathway on chronic binding of antagonist to N-methyl-D-aspartate receptors during brain development leading to neurodegeneration with impairment in learning and memory in aging. OECD Series on Adverse Outcome Pathways, No. 8. OECD Publishing, Paris. doi:10.1787/95f569ad-en
Tschudi-Monnet, F., Zurich, M.-G., Nunes, C. et al. (2022). Binding of electrophilic chemicals to SH(thiol)-group of proteins and/or to seleno-proteins involved in protection against oxidative stress during brain development leading to impairment of learning and memory. OECD Series on Adverse Outcome Pathways, No. 20. OECD Publishing, Paris. doi:10.1787/4df0e9e4-en
Van Der Zalm, A. J., Barroso, J., Browne, P. et al. (2022). A framework for establishing scientific confidence in new approach methodologies. Arch Toxicol 96, 2865-2879. doi:10.1007/s00204-022-03365-4
Van Melis, L. V. J., Heusinkveld, H. J., Langendoen, C. et al. (2023). Organophosphate insecticides disturb neuronal network development and function via non-AChE mediated mechanisms. Neurotoxicology 94, 35-45. doi:10.1016/j.neuro.2022.11.002
Vinken, M., Benfenati, E., Busquet, F. et al. (2021). Safer chemicals using less animals: Kick-off of the European ONTOX project. Toxicology 458, 152846. doi:10.1016/j.tox.2021.152846
Virolainen, S. J., VonHandorf, A., Viel, K. C. M. F. et al. (2022). Gene-environment interactions and their impact on human health. Genes Immun 24, 1-11. doi:10.1038/s41435-022-00192-6
White, R. J., Collins, J. E., Sealy, I. M. et al. (2017). A high-resolution mRNA expression time course of embryonic development in zebrafish. Elife 6, e30860. doi:10.7554/eLife.30860
Zablotsky, B., Black, L. I., Maenner, M. J. et al. (2019). Prevalence and trends of developmental disabilities among children in the United States: 2009-2017. Pediatrics 144, e20190811. doi:10.1542/peds.2019-0811
Zhang, L., Li, S. and Xia, M. (2022). High-throughput neurite outgrowth assay using GFP-labeled iPSC-derived neurons. Curr Protoc 2, e542. doi:10.1002/cpz1.542
Zhong, X., Harris, G., Smirnova, L. et al. (2020). Antidepressant paroxetine exerts developmental neurotoxicity in an iPSC-derived 3D human brain model. Front Cell Neurosci 14, 25. doi:10.3389/fncel.2020.00025