Human relevant frontiers in drug safety and efficacy
Main Article Content
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Baran, S. W., Brown, P. C., Baudy, A. R. et al. (2022). Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS affiliate). ALTEX 39, 297-314. doi:10.14573/altex.2112203
Gleeson, J. P., Zhang, S. Y., Subelzu, N. et al. (2024). Head-to-head comparison of Caco-2 transwell and gut-on-a-chip models for assessing oral peptide formulations. Mol Pharm 21, 3880-3888. doi:10.1021/acs.molpharmaceut.4c00210
Hansell, L., Ritskes-Hoitinga, J., Visseren-Hamakers, I. J. et al. (2024). Recommendations for the EU roadmap to accelerate the transition towards phasing out animal testing for chemical safety assessments. Frontiers Policy Labs. doi:10.25453/plabs.26809168.v1
Jang, K.-J., Otieno, M. A., Ronxhi, J. et al. (2019). Reproducing human and cross-species drug toxicities using a liver-chip. Sci Transl Med 11, eaax5516. doi:10.1126/scitranslmed.aax5516
Jeong, C. G., Dal Negro, G., Getsios, S. et al. (2019). Chapter 5 – Application of complex in vitro models (CIVMs) in drug discovery for safety testing and disease modeling. In J. T. Borenstein, V. Tandon, S. L. Tao et al. (eds.), Microfluidic Cell Culture Systems (Second Edition) (121-158). Elsevier. doi:10.1016/B978-0-12-813671-3.00005-0
Marx, U., Akabane, T., Andersson, T. B. et al. (2020). Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 37, 365-394. doi:10.14573/altex.2001241
Mitrofanova, O., Nikolaev, M., Xu, Q. et al. (2024). Bioengineered human colon organoids with in vivo-like cellular complexity and function. Cell Stem Cell 31, 1175-1186.e7. doi:10.1016/j.stem.2024.05.007
Pamies, D., Ekert, J., Zurich, M.-G. et al. (2024). Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Reports 19, 604-617. doi:10.1016/j.stemcr.2024.03.009
Piergiovanni, M., Mennecozzi, M., Sampani, S. et al. (2024). Heads on! Designing a qualification framework for organ-on-chip. ALTEX 41, 320-323. doi:10.14573/altex.2401231
Reyes, D. R., Esch, M. B., Ewart, L. et al. (2024). From animal testing to in vitro systems: Advancing standardization in microphysiological systems. Lab Chip 24, 1076-1087. doi:10.1039/d3lc00994g
Rumsey, J. W., Lorance, C., Jackson, M. et al. (2022). Classical complement pathway inhibition in a “human-on-a-chip” model of autoimmune demyelinating neuropathies. Adv Ther 5, 2200030. doi:10.1002/adtp.202200030
Swaminathan, S., Kumar, V. and Kaul, R. (2019). Need for alternatives to animals in experimentation: An Indian perspective. Indian J Med Res 149, 584-592. doi:10.4103/ijmr.IJMR_2047_17
Tsakalozou, E., Babiskin, A. and Zhao, L. (2021). Physiologically‐based pharmacokinetic modeling to support bioequivalence and approval of generic products: A case for diclofenac sodium topical gel, 1%. CPT Pharmacometrics Syst Pharmacol 10, 399-411. doi:10.1002/psp4.12600
Turner, J., Pound, P., Owen, C. et al. (2023). Incorporating new approach methodologies into regulatory nonclinical pharmaceutical safety assessment. ALTEX 40, 519-533. doi:10.14573/altex.2212081
Zhang, S. Y., Ong, W. S. Y., Subelzu, N. et al. (2024). Validation of a Caco-2 microfluidic chip model for predicting intestinal absorption of BCS class I-IV drugs. Int J Pharm 656, 124089. doi:10.1016/j.ijpharm.2024.124089