Mapping physiology: A systems biology approach for the development of alternative methods in toxicology
Main Article Content
Abstract
Chemical safety assessment still heavily relies on animal testing, presenting ethical dilemmas and limited human predictive value. New approach methodologies (NAMs), including in vitro and in silico techniques, offer alternative solutions. In silico toxicology has made progress in predicting chemical effects but frequently lacks biological mechanistic foundations. Recent developments focus on mechanistic understanding of adverse effects inflicted by chemicals, as embedded in (quantitative) adverse outcome pathways (AOPs). However, there is a demand for more detailed mechanistic insights at the gene and cell levels, encompassing both pathology and physiology. Drawing inspiration from the Disease Maps Project, this paper introduces Physiological Maps (PMs) as comprehensive graphical representations of biochemical processes related to specific organ functions. PMs are standardized using Systems Biology Graphical Notation and controlled vocabularies and annotations. Curation guidelines have been developed to ensure reproducibility and usability. This paper presents the methodology used to build PMs, emphasizing the essential collaboration between domain experts and curators. PMs offer user-friendly, standardized visualization for data analysis and educational purposes. Enabling a better understanding of (patho)physiology, they also complement and support the development of AOPs by providing detailed mechanistic information at the gene and cell level. Furthermore, PMs contribute to developing in vitro test batteries and to building (dynamic) in silico models aiming to predict the toxicity of chemicals. Collaborative efforts between the toxicology and systems biology communities are crucial for creating standardized and comprehensive PMs, supporting and accelerating the development of human-relevant NAMs for next-generation risk assessment.
Plain language summary
Assessing the safety of chemicals still relies heavily on animal testing, which raises ethical concerns and has limited relevance to humans. New approach methodologies (NAMs), such as in silico (computer-based) models and in vitro (laboratory-based) experiments, offer promising alternatives. However, the current NAMs often lack a detailed understanding of biological mechanisms. This paper introduces Physiological Maps (PMs), in silico tools that visually represent biological processes and interactions within specific organs and cells. PMs use standardized formats and annotations, making them easy to share and understand. By providing insights into human biology, PMs complement and enhance NAMs, including adverse outcome pathways (AOPs), in vitro experiments and in silico models, aiming to improve predictions of chemical toxicity. This approach fosters collaboration between the toxicology and systems biology communities in order to advance human-relevant risk assessment methods.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Agrawal, A., Balcı, H., Hanspers, K. et al. (2024). WikiPathways 2024: next generation pathway database. Nucleic Acids Res 52, D679–D689. doi:10.1093/nar/gkad960
Ankley, G. T., Bennett, R. S., Erickson, R. J. et al. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29, 730–741. doi:10.1002/etc.34
Barnes, D. A., Firman, J. W., Belfield, S. J. et al. (2024). Development of an adverse outcome pathway network for nephrotoxicity. Arch Toxicol 98, 929–942. doi:10.1007/s00204-023-03637-7
Bozada, T., Borden, J., Workman, J. et al. (2021). Sysrev: A FAIR Platform for Data Curation and Systematic Evidence Review. Front Artif Intell 4, 685298. doi:10.3389/frai.2021.685298
Corradi, M. P. F., de Haan, A. M., Staumont, B. et al. (2022). Natural language processing in toxicology: Delineating adverse outcome pathways and guiding the application of new approach methodologies. Biomater Biosyst 7. doi:10.1016/j.bbiosy.2022.100061
Fujita, K. A., Ostaszewski, M., Matsuoka, Y. et al. (2014). Integrating pathways of parkinson’s disease in a molecular interaction map. Mol Neurobiol 49, 88–102. doi:10.1007/s12035-013-8489-4
Funahashi, A., Matsuoka, Y., Jouraku, A. et al. (2008). CellDesigner 3.5: A versatile modeling tool for biochemical networks. Proc IEEE 96, 1254–1265. doi:10.1109/JPROC.2008.925458
Gawron, P., Ostaszewski, M., Satagopam, V. et al. (2016). MINERVA—A platform for visualization and curation of molecular interaction networks. npj Syst Biol Appl 2, 1–6. doi:10.1038/npjsba.2016.20
Gillespie, M., Jassal, B., Stephan, R. et al. (2022). The reactome pathway knowledgebase 2022. Nucleic Acids Res 50, D687–D692. doi:10.1093/nar/gkab1028
Hemmerich, J. and Ecker, G. F. (2020). In silico toxicology: From structure–activity relationships towards deep learning and adverse outcome pathways. WIREs Comput Mol Sci 10, e1475. doi:10.1002/wcms.1475
Heusinkveld, H. J., Staal, Y. C. M., Baker, N. C. et al. (2021). An ontology for developmental processes and toxicities of neural tube closure. Reprod Toxicol 99, 160–167. doi:10.1016/j.reprotox.2020.09.002
Hoksza, D., Gawron, P., Ostaszewski, M. et al. (2020). Closing the gap between formats for storing layout information in systems biology. Brief Bioinform 21, 1249–1260. doi:10.1093/bib/bbz067
Ito, S., Mukherjee, S., Erami, K. et al. (2024). Proof of concept for quantitative adverse outcome pathway modeling of chronic toxicity in repeated exposure. Sci Rep 14, 4741. doi:10.1038/s41598-024-55220-4
Jdey, W., Thierry, S., Russo, C. et al. (2017). Drug-driven synthetic lethality: Bypassing tumor cell genetics with a combination of AsiDNA and PARP inhibitors. Clin Cancer Res 23, 1001–1011. doi:10.1158/1078-0432.CCR-16-1193
Kanehisa, M., Furumichi, M., Sato, Y. et al. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51, D587–D592. doi:10.1093/nar/gkac963
Keating, S. M., Waltemath, D., König, M. et al. (2020). SBML Level 3: an extensible format for the exchange and reuse of biological models . Mol Syst Biol 16, e9110. doi:10.15252/msb.20199110
Kuperstein, I., Bonnet, E., Nguyen, H. A. et al. (2015). Atlas of Cancer Signalling Network: A systems biology resource for integrative analysis of cancer data with Google Maps. Oncogenesis 4, e160–e160. doi:10.1038/oncsis.2015.19
Ladeira, L., Staumont, B., Gamba, A. et al. (2024). ONTOX’s Physiological Maps Curation Guidelines (1.0). doi:10.5281/ZENODO.13239453
Luechtefeld, T. and Hartung, T. (2017). Computational approaches to chemical hazard assessment. ALTEX 34, 459–478. doi:10.14573/altex.1710141
Luechtefeld, T., Marsh, D., Rowlands, C. et al. (2018). Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci 165, 198–212. doi:10.1093/toxsci/kfy152
Mazein, A., Ostaszewski, M., Kuperstein, I. et al. (2018). Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms. npj Syst Biol Appl 4, 21. doi:10.1038/s41540-018-0059-y
Mazein, A., Acencio, M. L., Balaur, I. et al. (2023a). A guide for developing comprehensive systems biology maps of disease mechanisms: planning, construction and maintenance. Front Bioinforma 3, 1197310. doi:10.3389/fbinf.2023.1197310
Mazein, A., Shoaib, M., Alb, M. et al. (2023b). Using interactive platforms to encode, manage and explore immune-related adverse outcome pathways ORCID. bioRxiv, 2023.03.21.533620. doi:10.1101/2023.03.21.533620
Mazein, A., Lopata, O., Reiche, K. et al. (2024). An explorable model of an adverse outcome pathway of cytokine release syndrome related to the administration of immunomodulatory biotherapeutics and cellular therapies. doi:10.21203/rs.3.rs-5163108/v1
Monraz Gomez, L. C., Kondratova, M., Ravel, J.-M. et al. (2019). Application of Atlas of Cancer Signalling Network in preclinical studies. Brief Bioinform 20, 701–716. doi:10.1093/bib/bby031
Niarakis, A., Ostaszewski, M., Mazein, A. et al. (2023). Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol 14. doi:10.3389/fimmu.2023.1282859
Novère, N. Le, Hucka, M., Mi, H. et al. (2009). The Systems Biology Graphical Notation. Nat Biotechnol 27, 735–741. doi:10.1038/nbt.1558
Ostaszewski, M., Gebel, S., Kuperstein, I. et al. (2019). Community-driven roadmap for integrated disease maps. Brief Bioinform 20, 659–670. doi:10.1093/bib/bby024
Ostaszewski, M., Niarakis, A., Mazein, A. et al. (2021). COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Mol Syst Biol 17. doi:10.15252/msb.202110387
Pico, A. R., Kelder, T., van Iersel, M. P. et al. (2008). WikiPathways: Pathway Editing for the People. PLoS Biol 6, e184. doi:10.1371/journal.pbio.0060184
Punt, A., Bouwmeester, H., Blaauboer, B. J. et al. (2020). New Approach Methodologies (NAMs) for Human-Relevant Biokinetics Predictions: Meeting the Paradigm Shift in Toxicology Towards an Animal-Free Chemical Risk Assessment. ALTEX 37, 607–622. doi:10.14573/altex.2003242
Rougny, A., Touré, V., Moodie, S. et al. (2019). Systems Biology Graphical Notation: Process Description language Level 1 Version 2.0. J Integr Bioinform 16. doi:10.1515/jib-2019-0022
Schmeisser, S., Miccoli, A., von Bergen, M. et al. (2023). New approach methodologies in human regulatory toxicology – Not if, but how and when! Environ Int 178. doi:10.1016/j.envint.2023.108082
Serhan, C. N., Gupta, S. K., Perretti, M. et al. (2020). The Atlas of Inflammation Resolution (AIR). Mol Aspects Med 74. doi:10.1016/j.mam.2020.100894
van Ertvelde, J., Verhoeven, A., Maerten, A. et al. (2023). Optimization of an adverse outcome pathway network on chemical-induced cholestasis using an artificial intelligence-assisted data collection and confidence level quantification approach. J Biomed Inform 145. doi:10.1016/j.jbi.2023.104465
Verhoeven, A., van Ertvelde, J., Boeckmans, J. et al. (2024). A quantitative weight-of-evidence method for confidence assessment of adverse outcome pathway networks: A case study on chemical-induced liver steatosis. Toxicology 505. doi:10.1016/j.tox.2024.153814
Vinken, M., Benfenati, E., Busquet, F. et al. (2021). Safer chemicals using less animals: kick-off of the European ONTOX project. Toxicology 458, 152846. doi:10.1016/j.tox.2021.152846
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J. et al. (2016). Comment: The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 1–9. doi:10.1038/sdata.2016.18
Wittwehr, C., Aladjov, H., Ankley, G. et al. (2017). How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology. Toxicol Sci 155, 326–336. doi:10.1093/toxsci/kfw207