AOPs to connect food additives’ effects on gut microbiota to health outcomes
Main Article Content
Abstract
Gut microbiota play a central role in human health, notably through the production of metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health, these microbial metabolites significantly impact multiple organ systems by activating key signaling pathways along the gut-organ axes, including the gut-liver, gut-brain, and gut-bone axes. Chemicals ingested through food such as food additives, extensively used to enhance the texture, preservation and appearance of foods, may interact with our gut microbiota, altering metabolite production, and this can have consequences for our health. However, gut microbial metabolism is currently overlooked in toxicology. While efforts are underway to develop standardized human-based new approach methodologies to assess compound-microbiome interactions, anchoring those assays within the adverse outcome pathway (AOP) framework would offer a structured way to connect changes in gut microbial metabolism to adverse health outcomes. Using human-based models enhances the relevance of the results while supporting the reduction of animal-based testing in toxicology research.
Plain language summary
The microorganisms in our gut release molecules that influence our body functions and keep us healthy. Food additives, which are used to enhance the texture, preservation and appearance of foods, may disrupt the microbial balance, potentially leading to detrimental health effects. However, the potential impact of food additives on gut microorganisms is not yet considered in their safety assessments. Developing human-based tests to study these interactions could inform the safety assessment of food additives. The adverse outcome pathway (AOP) framework allows compiling and structuring relevant information and identifying knowledge gaps. Using human-based tests rather than animal tests yields more relevant results and reduces the reliance on animal testing in toxicology research.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Beekmann, K. and Tal, T. (2024). Can the microbiome mediate the toxicity of environmental chemicals? Toxicol Lett 399, S2–S3. doi:10.1016/j.toxlet.2024.07.010
Blaak, E. E., Canfora, E. E., Theis, S. et al. (2020). Short chain fatty acids in human gut and metabolic health. Benef microbes 11, 411-455. doi:10.3920/BM2020.0057
Chassaing, B., Koren, O., Goodrich, J. K. et al. (2015). Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92-96. doi:10.1038/nature14232
Clerbaux, L. A., Mayasich, S. A., Muñoz, A. et al. (2022a). Gut as an alternative entry route for SARS-CoV-2: Current evidence and uncertainties of productive enteric infection in COVID-19. J Clin Med 11, 5691. doi:10.3390/jcm11195691
Clerbaux, L. A., Fillipovska, J., Muñoz, A. et al. (2022b). Mechanisms leading to gut dysbiosis in COVID-19: Current evidence and uncertainties based on adverse outcome pathways. J Clin Med 11, 5400. doi:10.3390/jcm11185400
Clerbaux, L. A., Albertini, M. C., Amigó, N. et al. (2022). Factors modulating COVID-19: A mechanistic understanding based on the adverse outcome pathway framework. J Clin Med 11, 4464. doi:10.3390/jcm11154464
Clerbaux, L. A., Filipovska, J., Nymark, P. et al. (2024a). Beyond chemicals: Opportunities and challenges of integrating non-chemical stressors in adverse outcome pathways. ALTEX 41, 233-247. doi:10.14573/altex.2307061
Clerbaux, L. A., Stanco, D., Proot, V. et al. (2024b). Adverse outcome pathways to support assessment of food nanoparticles toxicity on gut microbiota and intestinal barrier integrity. Toxicol Lett 399, S128. doi:10.1016/j.toxlet.2024.07.329
Côté, F., Fligny, C., Fromes, Y. et al. (2004). Recent advances in understanding serotonin regulation of cardiovascular function. Trends Mol Med 10, 232-238. doi:10.1016/j.molmed.2004.03.007
Di Vincenzo, F., Del Gaudio, A., Petito, V. et al. (2024). Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern Emerg Med 19, 275-293. doi:10.1007/s11739-023-03374-w
Gerasimidis, K., Bryden, K., Chen, X. et al. (2020). The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. Eur J Nutr 59, 3213-3230. doi:10.1007/s00394-019-02161-8
Gillard, J. and Leclercq, I. A. (2023). Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clin Sci 137, 65-85. doi:10.1042/CS20220697
Jimonet, P., Druart, C., Blanquet-Diot, S. et al. (2024). Gut microbiome integration in drug discovery and development of small molecules. Drug Metab Dispos 52, 274-287. doi:10.1124/dmd.123.001605
Karaca, M., Fritsche, K., Lichtenstein, D. et al. (2023). Adverse outcome pathway-based analysis of liver steatosis in vitro using human liver cell lines. STAR Protoc 4, 102500. doi:10.1016/j.xpro.2023.102500
Kendig, D. M. and Grider, J. R. (2015) ‘Serotonin and colonic motility’,Neurogastroenterology and Motility. Blackwell Publishing Ltd, pp. 899–905. doi:10.1111/nmo.12617
Lehman, P. C., Cady, N., Ghimire, S. et al. (2023). Low-dose glyphosate exposure alters gut microbiota composition and modulates gut homeostasis. Environ Toxicol Pharmacol 100, 104149. doi:10.1016/j.etap.2023.104149
Leist, M., Ghallab, A., Graepel, R. et al. (2017). Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 91, 3477-3505. doi:10.1007/s00204-017-2045-3
Li, P., Li, M., Wu, T. et al. (2022). Systematic evaluation of antimicrobial food preservatives on glucose metabolism and gut microbiota in healthy mice. NPJ Sci Food 6, 42. doi:10.1038/s41538-022-00158-y
Mellor, C.L., Steinmetz, F.P. and Cronin, M.T.D. (2016). The identification of nuclear receptors associated with hepatic steatosis to develop and extend adverse outcome pathways. Crit Rev Toxicol 46, 138-152. doi:10.3109/10408444.2015.1089471
Naimi, S., Viennois, E., Gewirtz, A.T. et al. (2021). Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 9, 66. doi:10.1186/s40168-020-00996-6
Ma, M. L., Ma, Z. J., He, Y. L. et al. (2022). Efficacy of vitamin K2 in the prevention and treatment of postmenopausal osteoporosis: A systematic review and meta-analysis of randomized controlled trials. Front Public Health 10, 979649. doi:10.3389/fpubh.2022.979649
Sandhu, S., Keyworth, M., Karimi-Jashni, S. et al. (2024). AOP Report: Development of an adverse outcome pathway for deposition of energy leading to bone loss. Environ Mol Mutagen 65 Suppl 3, 85-111. doi:10.1002/em.22631
Stanco, D., Lipsa, D., Bogni, A. et al. (2024). An adverse outcome pathway for food nanomaterial-induced intestinal barrier disruption. Front Toxicol 6, 1474397. doi:10.3389/ftox.2024.1474397
Sun, Z., Wang, W., Li, L. et al. (2022). Comprehensive assessment of functional effects of commonly used sugar substitute sweeteners on ex vivo human gut microbiome. Microbiol Spectr 10, e0041222. doi:10.1128/spectrum.00412-22
Villeneuve, D. L., Crump, D., Garcia-Reyero, N. et al. (2014). Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142, 312-320. doi:10.1093/toxsci/kfu199
Vinken M. (2018). Taking adverse outcome pathways to the next level. Toxicol In Vitro 50, A1–A2. doi:10.1016/j.tiv.2018.03.017
van der Voet, H., Kruisselbrink, J. W., de Boer, W. J. et al. (2020). The MCRA toolbox of models and data to support chemical mixture risk assessment. Food Chem Toxicol 138, 111185. doi:10.1016/j.fct.2020.111185
Whelan, K., Bancil, A. S., Lindsay, J. O. and Chassaing, B. (2024). Ultra-processed foods and food additives in gut health and disease. Nat Rev Gastroenterol Hepatol 21, 406-427. doi:10.1038/s41575-024-00893-5