Estimation of bioavailable concentration of endogenously formed N-nitrosamines by physiologically based kinetic modelling
Main Article Content
Abstract
N-nitrosamines (NAs) are potentially carcinogenic organic compounds, and nitrosamine drug substance-related impurities (NDSRIs) are currently regulated with class-specific thresholds in the low nanogram range according to the carcinogenic potency categorization approach (CPCA) classification schema. Beyond direct exposure, NDSRIs can form endogenously in the human organism after ingestion of secondary amines. As recently shown, enalapril, propranolol, and fluoxetine form NDSRIs under conditions mimicking the acidic environment in the stomach. The MUTAMIND project investigated whether such endogenously formed NA levels lead to plasma or liver concentrations which align with or exceed the acceptable intake limits based on the current CPCA. A generic physiologically based kinetic (PBK) model was built using compound-specific in vitro ADME parameters such as intestinal permeability and hepatic clearance. The predictions correlated well with measured in vivo ADME data for the data-rich APIs, so the same PBK approach was applied to the corresponding NDSRIs. While the modelling of propranolol was unremarkable, the highest NA conversion rate observed for N-nitrosoenalapril under gastric conditions resulted in plasma and liver levels exceeding those derived from the CPCA threshold by a factor of about 800 and 400, respectively. The long half-life of fluoxetine suggests a risk of bioaccumulation of its nitrosamine with chronic exposure. These findings indicate that PBK modelling could be a valuable tool as part of a weight of evidence approach in contributing to the risk assessment of nitrosamine impurities in pharmaceuticals.
Plain language summary
Exposure to N-nitrosamines (NAs) can occur through direct oral uptake of NAs or formation of NAs from certain compounds in the body and is potentially harmful. NAs are regulated by the Carcinogenic Potency Category Approach (CPCA), which establishes acceptable intake based on chemical structure properties and corresponding animal studies. In vitro experiments combined with physiologically based kinetic (PBK) modeling enables us to model the levels of NAs reached in the human body over time. We have incorporated data on the formation of NAs from certain drugs in artificial stomach acid into the PBK model and compared the levels that can be reached to CPCA thresholds. We show that PBK models based on species- and substance-specific data serve as a suitable tool for assessing internal exposure without animal experimentation.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Abuhelwa, A. Y., Foster, D. J. R. and Upton, R. N. (2016). A quantitative review and meta-models of the variability and factors affecting oral drug absorption-part i: Gastrointestinal ph. AAPS J 18, 1309-1321. doi:10.1208/s12248-016-9952-8
Anselme, J.-P. (1979). The organic chemistry of n-nitrosamines: A brief review. In (eds.), N-nitrosamines. doi:10.1021/bk-1979-0101.ch001
Arafat, T., Awad, R., Hamad, M. et al. (2005). Pharmacokinetics and pharmacodynamics profiles of enalapril maleate in healthy volunteers following determination of enalapril and enalaprilat by two specific enzyme immunoassays. J Clin Pharm Ther 30, 319-328. doi:10.1111/j.1365-2710.2005.00646.x
Aronoff, G. R., Bergstrom, R. F., Pottratz, S. T. et al. (1984). Fluoxetine kinetics and protein binding in normal and impaired renal function. Clin Pharmacol Ther 36, 138-144. doi:10.1038/clpt.1984.152
Berezhkovskiy, L. M. (2004). Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci 93, 1628-1640. doi:10.1002/jps.20073
Bouchoucha, M., Devroede, G., Bon, C. et al. (2015). How many segments are necessary to characterize delayed colonic transit time? Int J Colorectal Dis 30, 1381-1389. doi:10.1007/s00384-015-2277-8
Burton, R. D., Hieronymus, T., Chamem, T. et al. (2018). Assessment of the biotransformation of low-turnover drugs in the hmicrorel human hepatocyte coculture model. Drug Metab Dispos 46, 1617-1625. doi:10.1124/dmd.118.082867
Caccia, S., Cappi, M., Fracasso, C. et al. (1990). Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in the rat. Psychopharmacology 100, 509-514. doi:10.1007/BF02244004
Caldwell, G. W., Easlick, S. M., Gunnet, J. et al. (1998). Permeability of eight β-blockers through caco-2 monolayers utilizing liquid chromatography electrospray ionization mass spectrometry. Journal of Mass Spectrometry 33, 607-614. doi:10.1002/(Sici)1096-9888(199807)33:7<607::Aid-Jms672>3.0.Co;2-O
Cioc, R. C., Joyce, C., Mayr, M. et al. (2023). Formation of n-nitrosamine drug substance related impurities in medicines: A regulatory perspective on risk factors and mitigation strategies. Organic Process Research & Development 27, 1736-1750. doi:10.1021/acs.oprd.3c00153
Collins JT, N. A., Badireddy M. (2024). Anatomy, abdomen and pelvis, small intestine. Vol. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK459366/
Cross, K. P. and Ponting, D. J. (2021). Developing structure-activity relationships for n-nitrosamine activity. Comput Toxicol 20, doi:10.1016/j.comtox.2021.100186
Dawson, D. E., Ingle, B. L., Phillips, K. A. et al. (2021). Designing qsars for parameters of high-throughput toxicokinetic models using open-source descriptors. Environ Sci Technol 55, 6505-6517. doi:10.1021/acs.est.0c06117
EMA (2023). Appendix 2 to questions and answers for marketing authorisation holders/applicants on the chmp opinion for the article 5(3) of regulation (ec) no 726/2004 referral on nitrosamine impurities in human medicinal products. Carcinogenic Potency Categorisation Approach for Nnitrosamines. EMA/451665/2023. https://www.ema.europa.eu/system/files/documents/other/appendix_2_carcinogenic_potency_categorisation_approach_for_n-nitrosamines_en.pdf
EMA (2024). Appendix 1 to questions and answers for marketing authorisation holders/applicants on the chmp opinion for the article 5(3) of regulation (ec) no 726/2004 referral on nitrosamine impurities in human medicinal products. Acceptable intakes established for N-nitrosamines. EMA/451665/2023. https://www.ema.europa.eu/en/documents/other/appendix-1-acceptable-intakes-established-n-nitrosamines_en.xlsx
Fahrer, J. and Christmann, M. (2023). DNA alkylation damage by nitrosamines and relevant DNA repair pathways. Int J Mol Sci 24, 4684. doi:10.3390/ijms24054684
Fridman, A. L., Mukkhametshin, F. M. and Novikov, S. S. (1971). Advances in the chemistry of aliphatic n-nitrosamines. Russ. Chem. Rev 40, 34-50. https://www.russchemrev.org/RCR1894pdf
Gillatt, P. N., Palmer, R. C., Smith, P. L. et al. (1985). Susceptibilities of drugs to nitrosation under simulated gastric conditions. Food Chem Toxicol 23, 849-855. doi:10.1016/0278-6915(85)90286-8
Huang, W., Lee, S. L. and Yu, L. X. (2009). Mechanistic approaches to predicting oral drug absorption. AAPS J 11, 217-224. doi:10.1208/s12248-009-9098-z
ICRP (2002). Basic anatomical and physiological data for use in radiological protection reference values. Annals of the ICRP, 32(3-4), 5-265.
Kalam, M. N., Rasool, M. F., Alqahtani, F. et al. (2021). Development and evaluation of a physiologically based pharmacokinetic drug-disease model of propranolol for suggesting model informed dosing in liver cirrhosis patients. Drug Des Devel Ther 15, 1195-1211. doi:10.2147/DDDT.S297981
Karamanolis, G., Theofanidou, I., Yiasemidou, M. et al. (2008). A glass of water immediately increases gastric ph in healthy subjects. Dig Dis Sci 53, 3128-3132. doi:10.1007/s10620-008-0301-3
Kilford, P. J., Gertz, M., Houston, J. B. et al. (2008). Hepatocellular binding of drugs: Correction for unbound fraction in hepatocyte incubations using microsomal binding or drug lipophilicity data. Drug Metab Dispos 36, 1194-1197. doi:10.1124/dmd.108.020834
Kroes, R., Renwick, A. G., Cheeseman, M. et al. (2004). Structure-based thresholds of toxicological concern (ttc): Guidance for application to substances present at low levels in the diet. Food Chem Toxicol 42, 65-83. doi:10.1016/j.fct.2003.08.006
Li, X., Le, Y., Seo, J. E. et al. (2023). Revisiting the mutagenicity and genotoxicity of n-nitroso propranolol in bacterial and human in vitro assays. Regul Toxicol Pharmacol 141, 105410. doi:10.1016/j.yrtph.2023.105410
Lobell, M. and Sivarajah, V. (2003). In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pka and alogp98 values. Mol Divers 7, 69-87. doi:10.1023/b:modi.0000006562.93049.36
Martelli, A., Allavena, A., Sottofattori, E. et al. (1994). Low clastogenic activity in vivo of the n-nitroso derivatives of 5 beta-adrenergic-blocking drugs proved to be potent genotoxins in vitro. Toxicol Lett 73, 185-191. doi:10.1016/0378-4274(94)90057-4
McGinnity, D. F., Soars, M. G., Urbanowicz, R. A. et al. (2004). Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. Drug Metab Dispos 32, 1247-1253. doi:10.1124/dmd.104.000026
Morrison, R. A., Chong, S., Marino, A. M. et al. (1996). Suitability of enalapril as a probe of the dipeptide transporter system: In vitro and in vivo studies. Pharm Res 13, 1078-1082. doi:10.1023/a:1016071027177
Mudie, D. M., Amidon, G. L. and Amidon, G. E. (2010). Physiological parameters for oral delivery and in vitro testing. Mol Pharm 7, 1388-1405. doi:10.1021/mp100149j
Nagayasu, M., Ozeki, K. and Onoue, S. (2019). Three-compartment model analysis with minimal sampling points in the caco-2 permeability assay. Biol Pharm Bull 42, 1600-1604. doi:10.1248/bpb.b19-00221
Nies, A. S. and Shand, D. G. (1975). Clinical pharmacology of propranolol. Circulation 52, 6-15. doi:10.1161/01.cir.52.1.6
Nowak, N., Escher, S. E. and Schwarz, K. (in press). A unified whole lung PBK model for inhalational uptake of gases and aerosols in men. CPT Pharmacometrics Syst Pharmacol.
Nylund, K., Hausken, T., Odegaard, S. et al. (2012). Gastrointestinal wall thickness measured with transabdominal ultrasonography and its relationship to demographic factors in healthy subjects. Ultraschall Med 33, E225-E232. doi:10.1055/s-0031-1299329
OECD (2021). Guidance document on the characterisation, validation and reporting of physiologically based kinetic (pbk) models for regulatory purposes. OECD Series on Testing and Assessment. Environment, Health and Safety, Environment Directorate, OECD. 331.
Paini, A., Asturiol, D., Fortaner Torrent, S. et al. (2020): EURL ECVAM in vitro hepatocyte clearance and blood plasma protein binding dataset for 77 chemicals. European Commission, Joint Research Centre (JRC) [Dataset] http://data.europa.eu/89h/a2ff867f-db80-4acf-8e5c-e45502713bee
Paixao, P., Bermejo, M., Hens, B. et al. (2018). Gastric emptying and intestinal appearance of nonabsorbable drugs phenol red and paromomycin in human subjects: A multi-compartment stomach approach. Eur J Pharm Biopharm 129, 162-174. doi:10.1016/j.ejpb.2018.05.033
Pang, K. S. and Rowland, M. (1977). Hepatic clearance of drugs. I. Theoretical considerations of a "well-stirred" model and a "parallel tube" model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm 5, 625-653. doi:10.1007/BF01059688
Patten, C. J., Smith, T. J., Friesen, M. J. et al. (1997). Evidence for cytochrome p450 2a6 and 3a4 as major catalysts for n'-nitrosonornicotine alpha-hydroxylation by human liver microsomes. Carcinogenesis 18, 1623-1630. doi:10.1093/carcin/18.8.1623
Pearce, R. G., Setzer, R. W., Strope, C. L. et al. (2017). Httk: R package for high-throughput toxicokinetics. J Stat Softw 79, 1-26. doi:10.18637/jss.v079.i04
Punt, A., Pinckaers, N., Peijnenburg, A. et al. (2021). Development of a web-based toolbox to support quantitative in-vitro-to-in-vivo extrapolations (qivive) within nonanimal testing strategies. Chem Res Toxicol 34, 460-472. doi:10.1021/acs.chemrestox.0c00307
Richardson, D. J., Berks, B. C., Russell, D. A. et al. (2001). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58, 165-178. doi:10.1007/PL00000845
Rose, R. H., Turner, D. B., Neuhoff, S. et al. (2017). Incorporation of the time-varying postprandial increase in splanchnic blood flow into a pbpk model to predict the effect of food on the pharmacokinetics of orally administered high-extraction drugs. AAPS J 19, 1205-1217. doi:10.1208/s12248-017-0099-z
Routledge, P. A. and Shand, D. G. (1979). Clinical pharmacokinetics of propranolol. Clin Pharmacokinet 4, 73-90. doi:10.2165/00003088-197904020-00001
Sager, J. E., Lutz, J. D., Foti, R. S. et al. (2014). Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: In vitro to in vivo correlation of effects on cyp2d6, cyp2c19, and cyp3a4. Clin Pharmacol Ther 95, 653-662. doi:10.1038/clpt.2014.50
Schiller, C., Frohlich, C. P., Giessmann, T. et al. (2005). Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther 22, 971-979. doi:10.1111/j.1365-2036.2005.02683.x
Schmitt, W. (2008). General approach for the calculation of tissue to plasma partition coefficients. Toxicol In Vitro 22, 457-467. doi:10.1016/j.tiv.2007.09.010
Shand, D. G. (1976). Pharmacokinetics of propranolol: A review. Postgraduate medical journal 52, 22-25.
Shaw-Stiffel, T. A., Walker, S. E., Ogilvie, R. I. et al. (1994). Pharmacokinetic and pharmacodynamic interactions during multiple-dose administration of nisoldipine and propranolol. Clin Pharmacol Ther 55, 661-669. doi:10.1038/clpt.1994.83
Smith, T. J., Guo, Z., Gonzalez, F. J. et al. (1992). Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in human lung and liver microsomes and cytochromes p-450 expressed in hepatoma cells. Cancer Res 52, 1757-1763.
Smith, T. J., Stoner, G. D. and Yang, C. S. (1995). Activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nnk) in human lung microsomes by cytochromes p450, lipoxygenase, and hydroperoxides. Cancer Res 55, 5566-5573.
Sodhi, J. K. and Benet, L. Z. (2021). Successful and unsuccessful prediction of human hepatic clearance for lead optimization. J Med Chem 64, 3546-3559. doi:10.1021/acs.jmedchem.0c01930
Soetaert, K., Petzoldt, T. and Setzer, R. W. (2010). Solving differential equations in R: Package deSolve. J Stat Soft 33, 1-25. doi:10.18637/jss.v033.i09
Taylor, E. A. and Turner, P. (1981). The distribution of propranolol, pindolol and atenolol between human erythrocytes and plasma. Br J Clin Pharmacol 12, 543-548. doi:10.1111/j.1365-2125.1981.tb01263.x
Till, A. E., Gomez, H. J., Hichens, M. et al. (1984). Pharmacokinetics of repeated single oral doses of enalapril maleate (mk-421) in normal volunteers. Biopharm Drug Dispos 5, 273-280. doi:10.1002/bdd.2510050309
Uchimura, T., Kato, M., Saito, T. et al. (2010). Prediction of human blood-to-plasma drug concentration ratio. Biopharm Drug Dispos 31, 286-297. doi:10.1002/bdd.711
van Breemen, R. B. and Li, Y. (2005). Caco-2 cell permeability assays to measure drug absorption. Expert Opin Drug Metab Toxicol 1, 175-185. doi:10.1517/17425255.1.2.175
Vogel, M., Escher, S. E., Weiler, E. et al. (2025). Quantitative investigation of nitrosamine drug substance-related impurities (NDSRIs) under artificial gastric conditions by liquid chromatography-tandem mass spectrometry and structure-activity relationship analysis. Drug Test Anal, Epub ahead of pring. doi:10.1002/dta.3874
Wambaugh, J. F., Wetmore, B. A., Ring, C. L. et al. (2019). Assessing toxicokinetic uncertainty and variability in risk prioritization. Toxicol Sci 172, 235-251. doi:10.1093/toxsci/kfz205
Weitzberg, E. and Lundberg, J. O. (2013). Novel aspects of dietary nitrate and human health. Annu Rev Nutr 33, 129-159. doi:10.1146/annurev-nutr-071812-161159
Wilson, J. P. (1967). Surface area of the small intestine in man. Gut 8, 618-621. doi:10.1136/gut.8.6.618
Zaid, A. N., Bowirrat, A., Kort, J. J. et al. (2006). Bioequivalence study of two fluoxetine capsule formulations in healthy middle eastern volunteers. Int J Clin Pharmacol Ther 44, 593-602. doi:10.5414/cpp44593
Ziebarth, D. and Teichmann, B. (1980). Nitrosation of orally administered drugs under simulated stomach conditions. IARC Sci Publ 31, 231-244.
Ziebarth, D. S., G. (1976). Effects of some inhibitors on the nitrosation of drugs in human gastric juice. IARC Sci Publ 14, 279-290.