Validation of an Endopep-suspension immunoassay for the diagnostics of human botulism
Main Article Content
Abstract
Botulism is a potentially life-threatening disease caused by botulinum neurotoxin (BoNT)-producing bacteria of the genus Clostridium. Laboratory detection of BoNTs in patients’ samples is essential to confirm clinical diagnoses and to identify the causative BoNT serotype. The current ’gold standard’ method for BoNT detection is the mouse bioassay (MBA), a highly stressful animal experiment. A viable animal experiment replacement method must demonstrate high sensitivity, specificity, reproducibility and robustness, as well as comprehensive BoNT subtype detection, and be widely accepted in the field, necessitating rigorous validation. Here, we report on the validation of a previously established in vitro endopeptidase suspension immunoassay (Endopep-SIA) for the simultaneous detection, differentiation and quantification of BoNT serotypes A and B, the most frequent serotypes associated with human botulism. This assay uses monoclonal antibodies for BoNT extraction, followed by detection of the catalytic activity using neoepitope-specific monoclonal antibodies and suspension array technology. The Endopep-SIA showed high reproducibility with intra- and inter-assay variabilities between 7 and 22%, it demonstrated a sensitivity two- to twenty-fold higher than the MBA for BoNT in buffer samples and was equally sensitive for human serum samples with a limit of detection of 0.4 MLD/mL for BoNT/A and 1.0 MLD/mL for BoNT/B. Importantly, it reliably detected all six BoNT/A and six BoNT/B subtypes tested, including clinically relevant and bivalent strains, hereby proving high diagnostic safety. Based on the results obtained, we expect the Endopep-SIA to be instrumental in markedly reducing the number of animals used in botulism diagnostics.
Plain language summary
Botulinum neurotoxins cause the potentially fatal disease botulism in humans and animals. This medical emergency requires rapid testing and laboratory confirmation of toxin presence in patient samples such as blood. Historically, mice are injected with sample material and observed for onset of disease symptoms. While this method provides high sensitivity and reliable detection of the botulinum neurotoxins it is viewed as a highly stressful animal experiment. The present study aims at demonstrating the applicability, reliability and reproducibility of our previously reported animal replacement method, the Endopep-suspension immunoassay (Endopep-SIA). The method enriches the neurotoxins from samples and detects their activity based on straight-forward immunodetection. In our comprehensive validation study the Endopep-SIA provided excellent results and proved similar or better than the mouse bioassay. Thus, the Endopep-SIA is expected to reduce the number of animals used for the diagnostics of botulism.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Andreasson, U., Perret-Liaudet, A., van Waalwijk van Doorn, L. J. et al. (2015). A practical guide to immunoassay method validation. Front Neurol 6, 179. doi:10.3389/fneur.2015.00179
Anne, C., Cornille, F., Lenoir, C. et al. (2001). High-throughput fluorogenic assay for determination of botulinum type b neurotoxin protease activity. Anal Biochem 291, 253-261. doi:10.1006/abio.2001.5028
Armbruster, D. A. and Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29 Suppl 1, S49-52.
Arnon, S. S., Schechter, R., Inglesby, T. V. et al. (2001). Botulinum toxin as a biological weapon: Medical and public health management. JAMA 285, 1059-1070. doi:10.1001/jama.285.8.1059
Azadeh, M., Gorovits, B., Kamerud, J. et al. (2017). Calibration curves in quantitative ligand binding assays: Recommendations and best practices for preparation, design, and editing of calibration curves. AAPS J 20, 22. doi:10.1208/s12248-017-0159-4
Baldwin, M. R., Bradshaw, M., Johnson, E. A. et al. (2004). The c-terminus of botulinum neurotoxin type a light chain contributes to solubility, catalysis, and stability. Protein Expr Purif 37, 187-195. doi:10.1016/j.pep.2004.05.009
Barr, J. R., Moura, H., Boyer, A. E. et al. (2005). Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg Infect Dis 11, 1578-1583. doi:10.3201/eid1110.041279
Bas, A., Burns, N., Gulotta, A. et al. (2021). Understanding the development, standardization, and validation process of alternative in vitro test methods for regulatory approval from a researcher perspective. Small 17, e2006027. doi:10.1002/smll.202006027
Behrensdorf-Nicol, H. A., Wild, E., Bonifas, U. et al. (2018). In vitro potency determination of botulinum neurotoxin serotype a based on its receptor-binding and proteolytic characteristics. Toxicol In Vitro 53, 80-88. doi:10.1016/j.tiv.2018.07.008
Behrensdorf-Nicol, H. A., Bonifas, U., Klimek, J. et al. (2020). Transferability study of the binacle (binding and cleavage) assay for in vitro determination of botulinum neurotoxin activity. Biologicals 67, 81-87. doi:10.1016/j.biologicals.2020.06.007
Bever, C. S., Scotcher, M., Cheng, L. W. et al. (2019). Development and characterization of monoclonal antibodies to botulinum neurotoxin type e. Toxins (Basel) 11, doi:10.3390/toxins11070407
Binz, T., Blasi, J., Yamasaki, S. et al. (1994). Proteolysis of snap-25 by types e and a botulinal neurotoxins. J Biol Chem 269, 1617-1620.
Bjornstad, K., Tevell Aberg, A., Kalb, S. R. et al. (2014). Validation of the endopep-ms method for qualitative detection of active botulinum neurotoxins in human and chicken serum. Anal Bioanal Chem 406, 7149-7161. doi:10.1007/s00216-014-8170-4
Boyer, A. E., Moura, H., Woolfitt, A. R. et al. (2005). From the mouse to the mass spectrometer: Detection and differentiation of the endoproteinase activities of botulinum neurotoxins a-g by mass spectrometry. Anal Chem 77, 3916-3924. doi:10.1021/ac050485f
Busschots K., W. J., Krez N., Winter B. et al. (2023a). The certification of the protein mass concentration and biological activity of botulinum neurotoxin b (BoNT/b) in buffer: Eurm-112. Publications Office of the European Union JRC133680,
Busschots K., W. J., Krez N., Winter B. et al. (2023b). The certification of the protein mass concentration of botulinum neurotoxin a (BoNT/a) in buffer: Eurm-111. Publications Office of the European Union JRC133679,
Caliskan, C., Simsek, D., Leese, C. et al. (2024). A sensitive cell-based assay for testing potency of botulinum neurotoxin type A. ALTEX 41, 605-616. doi:10.14573/altex.2312071
Dezfulian, M., Hatheway, C. L., Yolken, R. H. et al. (1984). Enzyme-linked immunosorbent assay for detection of clostridium botulinum type a and type b toxins in stool samples of infants with botulism. J Clin Microbiol 20, 379-383. doi:10.1128/jcm.20.3.379-383.1984
Diamant, E., Torgeman, A., Epstein, E. et al. (2022). A cell-based alternative to the mouse potency assay for pharmaceutical type e botulinum antitoxins. ALTEX 39, 113-122. doi:10.14573/altex.2105251
DIN10102 (1988). Microbiological analysis of meat and meat products; detection of clostridium botulinum and botulinum toxin. Vol. Berlin: Beuth Verlag. doi:10.31030/2244831
Dong, M., Tepp, W. H., Johnson, E. A. et al. (2004). Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proc Natl Acad Sci U S A 101, 14701-14706. doi:10.1073/pnas.0404107101
Dorner, M. B., Schulz, K. M., Kull, S. et al. (2013). Complexity of botulinum neurotoxins: Challenges for detection technology. Curr Top Microbiol Immunol 364, 219-255. doi:10.1007/978-3-642-33570-9_11
Dorner, M. B., Wilking, H., Skiba, M. et al. (2023). A large travel-associated outbreak of iatrogenic botulism in four european countries following intragastric botulinum neurotoxin injections for weight reduction, turkiye, february to march 2023. Euro Surveill 28, doi:10.2807/1560-7917.ES.2023.28.23.2300203
Dunning, F. M., Piazza, T. M., Zeytin, F. N. et al. (2014). Isolation and quantification of botulinum neurotoxin from complex matrices using the botest matrix assays. J Vis Exp doi:10.3791/51170
ECDC (2023). Botulism - annual epidemiological report 2020. European Centre For Disease Prevention And Control (ECDC) https://www.ecdc.europa.eu/sites/default/files/documents/botulism-annual-epidemiological-report-2020.pdf
EU (2010). Directive 2010/63/eu of the european parliament and of the council on the protection of animals used for scientific purposes. Official Journal of the European Union 276, 33-79. http://data.europa.eu/eli/dir/2010/63/oj
Fernandez-Salas, E., Wang, J., Molina, Y. et al. (2012). Botulinum neurotoxin serotype a specific cell-based potency assay to replace the mouse bioassay. PLoS One 7, e49516. doi:10.1371/journal.pone.0049516
Ferreira, J. L., Maslanka, S., Johnson, E. et al. (2003). Detection of botulinal neurotoxins a, b, e, and f by amplified enzyme-linked immunosorbent assay: Collaborative study. J AOAC Int 86, 314-331.
Findlay, J. W., Smith, W. C., Lee, J. W. et al. (2000). Validation of immunoassays for bioanalysis: A pharmaceutical industry perspective. J Pharm Biomed Anal 21, 1249-1273. doi:10.1016/s0731-7085(99)00244-7
Fonfria, E., Maignel, J., Lezmi, S. et al. (2018). The expanding therapeutic utility of botulinum neurotoxins. Toxins (Basel) 10, doi:10.3390/toxins10050208
Fonfria, E., Marks, E., Foulkes, L. M. et al. (2023). Replacement of the mouse LD(50) assay for determination of the potency of abobotulinumtoxina with a cell-based method in both powder and liquid formulations. Toxins 15, doi:10.3390/toxins15050314
Gilmore, M. A., Williams, D., Okawa, Y. et al. (2011). Depolarization after resonance energy transfer (daret): A sensitive fluorescence-based assay for botulinum neurotoxin protease activity. Anal Biochem 413, 36-42. doi:10.1016/j.ab.2011.01.043
Gregory, R. W., Werner, W. E. and Ruegg, C. (2014). A quantitative bifunctional in vitro potency assay for botulinum neurotoxin serotype a. J Pharmacol Toxicol Methods 69, 103-107. doi:10.1016/j.vascn.2013.12.002
Guo, J., Xu, C., Li, X. et al. (2014). A simple, rapid and sensitive fret assay for botulinum neurotoxin serotype b detection. PLoS One 9, e114124. doi:10.1371/journal.pone.0114124
Hallis, B., James, B. A. and Shone, C. C. (1996). Development of novel assays for botulinum type a and b neurotoxins based on their endopeptidase activities. J Clin Microbiol 34, 1934-1938. doi:10.1128/jcm.34.8.1934-1938.1996
Hansbauer, E. M. (2016). Stationäre und mobile Verfahren zur Detektion und Differenzierung biologischer Toxine. Freie Universität Berlin, Dissertation. doi:10.17169/refubium-11723
Hansbauer, E. M., Skiba, M., Endermann, T. et al. (2016). Detection, differentiation, and identification of botulinum neurotoxin serotypes c, cd, d, and dc by highly specific immunoassays and mass spectrometry. Analyst 141, 5281-5297. doi:10.1039/c6an00693k
Harmsen, M. M., Cornelissen, J. C., van der Wal, F. J. et al. (2023). Single-domain antibody multimers for detection of botulinum neurotoxin serotypes c, d, and their mosaics in endopep-ms. Toxins (Basel) 15, doi:10.3390/toxins15090573
Hoyt, K. M., Barr, J. R., Hopkins, A. O. et al. (2024). Validation of a clinical assay for botulinum neurotoxins through mass spectrometric detection. J Clin Microbiol 62, e0162923. doi:10.1128/jcm.01629-23
Kalb, S. R., Moura, H., Boyer, A. E. et al. (2006). The use of endopep-ms for the detection of botulinum toxins a, b, e, and f in serum and stool samples. Anal Biochem 351, 84-92. doi:10.1016/j.ab.2006.01.027
Kalb, S. R., Lou, J., Garcia-Rodriguez, C. et al. (2009). Extraction and inhibition of enzymatic activity of botulinum neurotoxins/a1, /a2, and /a3 by a panel of monoclonal anti-bont/a antibodies. PLoS One 4, e5355. doi:10.1371/journal.pone.0005355
Kalb, S. R., Boyer, A. E. and Barr, J. R. (2015). Mass spectrometric detection of bacterial protein toxins and their enzymatic activity. Toxins 7, 3497-3511. doi:10.3390/toxins7093497
Kull, S., Schulz, K. M., Weisemann, J. et al. (2015). Isolation and functional characterization of the novel clostridium botulinum neurotoxin a8 subtype. PLoS One 10, e0116381. doi:10.1371/journal.pone.0116381
Lacy, D. B., Tepp, W., Cohen, A. C. et al. (1998). Crystal structure of botulinum neurotoxin type a and implications for toxicity. Nat Struct Biol 5, 898-902. doi:10.1038/2338
May, L. C., Walson, L., Steven, T. S. et al. (2010). Matrix effects—a challenge toward automation of molecular analysis. SLAS Technology 15, 233-242. doi:10.1016/j.jala.2010.02.001
Mazuet, C., Ezan, E., Volland, H. et al. (2012). Toxin detection in patients' sera by mass spectrometry during two outbreaks of type a botulism in france. J Clin Microbiol 50, 4091-4094. doi:10.1128/JCM.02392-12
McLellan, K., Das, R. E., Ekong, T. A. et al. (1996). Therapeutic botulinum type a toxin: Factors affecting potency. Toxicon 34, 975-985. doi:10.1016/0041-0101(96)00070-0
Montal, M. (2010). Botulinum neurotoxin: A marvel of protein design. Annu Rev Biochem 79, 591-617. doi:10.1146/annurev.biochem.051908.125345
Myszka, D. G. (1999). Improving biosensor analysis. J Mol Recognit 12, 279-284. doi:10.1002/(SICI)1099-1352(199909/10)12:5<279::AID-JMR473>3.0.CO;2-3
Niederstadt, L. (2012). Production of DNA induced mono-/ polyclonal antibodies for rapid detection of highly pathogenic viral agents and toxins of bioterroristic relevance. FU Berlin, Berlin. http://dx.doi.org/10.17169/refubium-7675
Pauly, D., Kirchner, S., Stoermann, B. et al. (2009). Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst 134, 2028-2039. doi:10.1039/b911525k
Peck, M. W., Smith, T. J., Anniballi, F. et al. (2017). Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins (Basel) 9, doi:10.3390/toxins9010038
Pellett, S. (2013). Progress in cell based assays for botulinum neurotoxin detection. Curr Top Microbiol Immunol 364, 257-285. doi:10.1007/978-3-642-33570-9_12
Pellett, S., Tepp, W. H. and Johnson, E. A. (2019). Critical analysis of neuronal cell and the mouse bioassay for detection of botulinum neurotoxins. Toxins (Basel) 11, doi:10.3390/toxins11120713
Peng, L., Berntsson, R. P., Tepp, W. H. et al. (2012). Botulinum neurotoxin d-c uses synaptotagmin i and ii as receptors, and human synaptotagmin ii is not an effective receptor for type b, d-c and g toxins. J Cell Sci 125, 3233-3242. doi:10.1242/jcs.103564
Pires-Alves, M., Ho, M., Aberle, K. K. et al. (2009). Tandem fluorescent proteins as enhanced fret-based substrates for botulinum neurotoxin activity. Toxicon 53, 392-399. doi:10.1016/j.toxicon.2008.12.016
Poras, H., Ouimet, T., Orng, S. V. et al. (2009). Detection and quantification of botulinum neurotoxin type a by a novel rapid in vitro fluorimetric assay. Appl Environ Microbiol 75, 4382-4390. doi:10.1128/AEM.00091-09
Rao, A. K., Sobel, J., Chatham-Stephens, K. et al. (2021). Clinical guidelines for diagnosis and treatment of botulism, 2021. MMWR Recomm Rep 70, 1-30. doi:10.15585/mmwr.rr7002a1
Rasooly, R., Stanker, L. H., Carter, J. M. et al. (2008). Detection of botulinum neurotoxin-a activity in food by peptide cleavage assay. Int J Food Microbiol 126, 135-139. doi:10.1016/j.ijfoodmicro.2008.05.012
Ross, J. A., Gilmore, M. A., Williams, D. et al. (2011). Characterization of forster resonance energy transfer in a botulinum neurotoxin protease assay. Anal Biochem 413, 43-49. doi:10.1016/j.ab.2011.01.045
Ruge, D. R., Dunning, F. M., Piazza, T. M. et al. (2011). Detection of six serotypes of botulinum neurotoxin using fluorogenic reporters. Anal Biochem 411, 200-209. doi:10.1016/j.ab.2011.01.002
Rummel, A., Karnath, T., Henke, T. et al. (2004). Synaptotagmins i and ii act as nerve cell receptors for botulinum neurotoxin g. J Biol Chem 279, 30865-30870. doi:10.1074/jbc.M403945200
Rummel, A. (2017). Two feet on the membrane: Uptake of clostridial neurotoxins. Curr Top Microbiol Immunol 406, 1-37. doi:10.1007/82_2016_48
Russell, W. M. S. and Burch, R. L. (1959). The principles of humane experimental technique.
Scalfaro, C., Auricchio, B., De Medici, D. et al. (2019). Foodborne botulism: An evolving public health challenge. Infect Dis (Lond) 51, 97-101. doi:10.1080/23744235.2018.1524584
Schantz, E. J. and Kautter, D. A. (1978). Standardized assay for clostridium botulinum toxins. Journal of Association of Official Analytical Chemists 61, 96-99. doi:10.1093/jaoac/61.1.96
Schiavo, G., Benfenati, F., Poulain, B. et al. (1992). Tetanus and botulinum-b neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832-835. doi:10.1038/359832a0
Selby, K., Douillard, F. P. and Lindstrom, M. (2025). Genomic and phenotypic polymorphism of clostridium botulinum group ii strain beluga through laboratory domestication. Int J Food Microbiol 426, 110927. doi:10.1016/j.ijfoodmicro.2024.110927
Sesardic, D., Leung, T. and Gaines Das, R. (2003). Role for standards in assays of botulinum toxins: International collaborative study of three preparations of botulinum type a toxin. Biologicals 31, 265-276. doi:10.1016/j.biologicals.2003.08.001
Simon, S., Fiebig, U., Liu, Y. et al. (2015). Recommended immunological strategies to screen for botulinum neurotoxin-containing samples. Toxins (Basel) 7, 5011-5034. doi:10.3390/toxins7124860
Smith, T. J., Lou, J., Geren, I. N. et al. (2005). Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 73, 5450-5457. doi:10.1128/IAI.73.9.5450-5457.2005
Solomon, H. M. and Lilly, T. (2001). Chapter 17: Clostridium botulinum. Bacteriological analytical manual (bam). Vol. 8. United States of America: FDA. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-17-clostridium-botulinum
Sonnabend, O., Sonnabend, W., Heinzle, R. et al. (1981). Isolation of clostridium botulinum type g and identification of type g botulinal toxin in humans: Report of five sudden unexpected deaths. J Infect Dis 143, 22-27. doi:10.1093/infdis/143.1.22
Stanker, L. H., Merrill, P., Scotcher, M. C. et al. (2008). Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type a and their use in analysis of milk by sandwich elisa. J Immunol Methods 336, 1-8. doi:10.1016/j.jim.2008.03.003
Stern, D., Berg, L. v., Skiba, M. et al. (2018). Replacing the mouse bioassay for diagnostics and potency testing of botulinum neurotoxins – progress and challenges. Berliner und Münchener Tierärztliche Wochenschrift 131, doi:10.2376/0005-9366-17110
Strech, D. and Dirnagl, U. (2019). 3rs missing: Animal research without scientific value is unethical. BMJ Open Sci 3, doi:10.1136/bmjos-2018-000048
Strotmeier, J., Willjes, G., Binz, T. et al. (2012). Human synaptotagmin-ii is not a high affinity receptor for botulinum neurotoxin b and g: Increased therapeutic dosage and immunogenicity. FEBS Lett 586, 310-313. doi:10.1016/j.febslet.2011.12.037
Suen, J. C., Hatheway, C. L., Steigerwalt, A. G. et al. (1988). Clostridium argentinense sp. Nov.: A genetically homogeneous group composed of all strains of clostridium botulinum toxin type g and some nontoxigenic strains previously identified as clostridium subterminale or clostridium hastiforme. International Journal of Systematic and Evolutionary Microbiology 38, 375-381. doi:10.1099/00207713-38-4-375
Swaminathan, S. and Eswaramoorthy, S. (2000). Structural analysis of the catalytic and binding sites of clostridium botulinum neurotoxin b. Nat Struct Biol 7, 693-699. doi:10.1038/78005
Taylor, K., Gericke, C. and Alvarez, L. R. (2019). Botulinum toxin testing on animals is still a europe-wide issue. ALTEX 36, 81-90. doi:10.14573/altex.1807101
Tevell Aberg, A., Karlsson, I. and Hedeland, M. (2021). Modification and validation of the endopep-mass spectrometry method for botulinum neurotoxin detection in liver samples with application to samples collected during animal botulism outbreaks. Anal Bioanal Chem 413, 345-354. doi:10.1007/s00216-020-03001-z
Tholen, D. W. (2004). Protocols for determination of limits of detection and limits of quantitation: Approved guideline. Vol. NCCLS. https://books.google.de/books?id=AXyBAAAACAAJ
Tsumoto, K., Ejima, D., Senczuk, A. M. et al. (2007). Effects of salts on protein-surface interactions: Applications for column chromatography. J Pharm Sci 96, 1677-1690. doi:10.1002/jps.20821
von Berg, L., Stern, D., Pauly, D. et al. (2019a). Functional detection of botulinum neurotoxin serotypes a to f by monoclonal neoepitope-specific antibodies and suspension array technology. Sci Rep 9, 5531. doi:10.1038/s41598-019-41722-z
von Berg, L., Stern, D., Weisemann, J. et al. (2019b). Optimization of snap-25 and vamp-2 cleavage by botulinum neurotoxin serotypes a-f employing taguchi design-of-experiments. Toxins (Basel) 11, doi:10.3390/toxins11100588
Wang, D., Baudys, J., Kalb, S. R. et al. (2011). Improved detection of botulinum neurotoxin type a in stool by mass spectrometry. Anal Biochem 412, 67-73. doi:10.1016/j.ab.2011.01.025
Wang, Y., Fry, H. C., Skinner, G. E. et al. (2017). Detection and quantification of biologically active botulinum neurotoxin serotypes a and b using a forster resonance energy transfer-based quantum dot nanobiosensor. ACS Appl Mater Interfaces 9, 31446-31457. doi:10.1021/acsami.7b08736
Wild, D. (2013). The immunoassay handbook : Theory and applications of ligand binding, elisa, and related techniques. Vol. 4th. Oxford ; Waltham, MA: Elsevier.
Wild, E., Bonifas, U., Klimek, J. et al. (2016). In vitro potency determination of botulinum neurotoxin b based on its receptor-binding and proteolytic characteristics. Toxicol In Vitro 34, 97-104. doi:10.1016/j.tiv.2016.03.011
Worbs, S., Skiba, M., Bender, J. et al. (2015). An international proficiency test to detect, identify and quantify ricin in complex matrices. Toxins (Basel) 7, 4987-5010. doi:10.3390/toxins7124859
Yang, Y., Zhang, H., Yuan, L. et al. (2024). A validation of the equivalence of the cell-based potency assay method with a mouse ld(50) bioassay for the potency testing of onabotulinumtoxina. Toxins (Basel) 16, doi:10.3390/toxins16060279