Making safety decisions for a sunscreen active ingredient using next-generation risk assessment: Benzophenone-4 case study
Main Article Content
Abstract
A next generation risk assessment was carried out to evaluate the safety of benzophenone-4 (BP-4), a UV filter present at 5% in a body lotion, to compare a non-animal approach with a traditional safety assessment based on historical animal data. Exposure characterization indicated that BP-4 is poorly absorbed through the skin, poorly metabolized by the liver, a substrate of influx and efflux transporters, and excreted by the kidney. The resulting physiologically-based kinetic model predicted an upper bound (95th percentile) plasma Cmax of 1.27 µM, and liver and kidney concentrations of 0.32 µM and 0.44µM, respectively. To characterize bioactivity, in silico and in vitro new approach methodologies were used. Points of departure (PoDs) were derived from four bioactivity platforms, including in vitro pharmacological profiling, CALUX assays, high-throughput transcriptomics, and a cell stress panel. By dividing the in vitro PoDs (PoDNAM) from these assays by the 95th percentile plasma Cmax value, so-called bioactivity:exposure ratios (BERs) were calculated. The lowest PoD was from a single gene expression change, and the highest PoD from phenotypic biomarkers using a primary renal cell model. Most BERs were above 11, except for those from gene-level PoDNAM in HepG2 and MCF-7 cells, which were 3.3 and 4.3. These lowest PoDNAMs are linked to gene transcription changes and are likely indicative of adaptive biological activity rather than adverse health effects. This work demonstrates the usefulness of next generation risk assessment in addressing pressing relevant regulatory questions without using animals.
Plain language summary
This study on benzophenone-4 (BP-4) highlights the potential of modern, non-animal testing methods to provide comprehensive safety evaluations. By demonstrating that BP-4 is poorly absorbed through the skin and efficiently excreted by the kidneys, the research underscores the compound's low systemic exposure. The use of advanced in silico and in vitro techniques allowed for detailed bioactivity assessments, revealing that most biological responses occurred at levels higher than the predicted consumer exposure and were likely adaptive. This approach not only aligns with the 3Rs principle by reducing reliance on animal testing but also offers a more ethical and potentially faster pathway for regulatory safety assessments. The findings suggest that next-generation risk assessments can effectively address safety concerns while paving the way for broader acceptance and implementation of these innovative methods in the regulatory landscape.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Androutsopoulos, V. P., Tsatsakis, A. M. and Spandidos, D. A. (2009). Cytochrome p450 cyp1a1: Wider roles in cancer progression and prevention. BMC Cancer 9, 187. doi:10.1186/1471-2407-9-187
Bajaj, P., Chung, G., Pye, K. et al. (2020). Freshly isolated primary human proximal tubule cells as an in vitro model for the detection of renal tubular toxicity. Toxicology 442, 152535. doi:10.1016/j.tox.2020.152535
Baltazar, M. T., Cable, S., Carmichael, P. L. et al. (2020). A next-generation risk assessment case study for coumarin in cosmetic products. Toxicol Sci 176, 236-252. doi:10.1093/toxsci/kfaa048
Berggren, E., White, A., Ouedraogo, G. et al. (2017). Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods. Comput Toxicol 4, 31-44. doi:10.1016/j.comtox.2017.10.001
Bowes, J., Brown, A. J., Hamon, J. et al. (2012). Reducing safety-related drug attrition: The use of in vitro pharmacological profiling. Nat Rev Drug Discov 11, 909-922. doi:10.1038/nrd3845
Brennan, R. J., Jenkinson, S., Brown, A. et al. (2024). The state of the art in secondary pharmacology and its impact on the safety of new medicines. Nat Rev Drug Discov 23, 525-545. doi:10.1038/s41573-024-00942-3
Browne, P., Paul Friedman, K., Boekelheide, K. et al. (2024). Adverse effects in traditional and alternative toxicity tests. Regul Toxicol Pharmacol 148, 105579. doi:10.1016/j.yrtph.2024.105579
Burbank, M., Kukic, P., Ouedraogo, G. et al. (2024). In vitro pharmacologic profiling aids systemic toxicity assessment of chemicals. Toxicol Appl Pharmacol 492, 117131. doi:10.1016/j.taap.2024.117131
Bury, D., Alexander-White, C., Clewell, H. J., 3rd et al. (2021). New framework for a non-animal approach adequately assures the safety of cosmetic ingredients - a case study on caffeine. Regul Toxicol Pharmacol 123, 104931. doi:10.1016/j.yrtph.2021.104931
Cable, S., Baltazar, M. T., Bunglawala, F. et al. (2024). Advancing systemic toxicity risk assessment: Evaluation of a nam-based toolbox approach. Toxicol Sci 204, 79-95. doi:10.1093/toxsci/kfae159
Choksi, N. Y., Truax, J., Layton, A. et al. (2019). United States regulatory requirements for skin and eye irritation testing. Cutan Ocul Toxicol 38, 141-155. doi:10.1080/15569527.2018.1540494
Collet, B., Simon, E., van der Linden, S. et al. (2020). Evaluation of a panel of in vitro methods for assessing thyroid receptor β and transthyretin transporter disrupting activities. Reprod Toxicol 96, 432-444. doi:10.1016/j.reprotox.2019.05.011
EFSA Scientific Committee, Benford, D., Halldorsson, T. et al. (2018). Guidance on uncertainty analysis in scientific assessments. EFSA J 16, e05123. doi:10.2903/j.efsa.2018.5123
Dankovic, D. A., Naumann, B. D., Maier, A. et al. (2015). The scientific basis of uncertainty factors used in setting occupational exposure limits. J Occup Environ Hyg 12 Suppl 1, S55-68. doi:10.1080/15459624.2015.1060325
Dent, M., Amaral, R. T., Da Silva, P. A. et al. (2018). Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Computat Toxicol 7, 20-26. doi:10.1016/j.comtox.2018.06.001
Dent, M. P., Vaillancourt, E., Thomas, R. S. et al. (2021). Paving the way for application of next generation risk assessment to safety decision-making for cosmetic ingredients. Regul Toxicol Pharmacol 125, 105026. doi:10.1016/j.yrtph.2021.105026
Desprez, B., Dent, M., Keller, D. et al. (2018). A strategy for systemic toxicity assessment based on non-animal approaches: The cosmetics europe long range science strategy programme. Toxicol in Vitro 50, 137-146. doi:10.1016/j.tiv.2018.02.017
Dimitrov, S. D., Diderich, R., Sobanski, T. et al. (2016). QSAR Toolbox – workflow and major functionalities. SAR QSAR Environ Res 27, 203-219. doi:10.1080/1062936X.2015.1136680
Ebmeyer, J., Najjar, A., Lange, D. et al. (2024). Next generation risk assessment: An ab initio case study to assess the systemic safety of the cosmetic ingredient, benzyl salicylate, after dermal exposure. Front Pharmacol 15, doi:10.3389/fphar.2024.1345992
EFSA, Aguilera, J., Aguilera-Gomez, M. et al. (2018). EFSA scientific colloquium 24 – 'omics in risk assessment: State of the art and next steps. EFSA Supp Publ 15, 1512E. doi:10.2903/sp.efsa.2018.EN-1512
Escher, S. E., Aguayo-Orozco, A., Benfenati, E. et al. (2022). Integrate mechanistic evidence from new approach methodologies (nams) into a read-across assessment to characterise trends in shared mode of action. Toxicol in Vitro 79, 105269. doi:10.1016/j.tiv.2021.105269
Farmahin, R., Williams, A., Kuo, B. et al. (2017). Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Arch Toxicol 91, 2045-2065. doi:10.1007/s00204-016-1886-5
Farmahin, R., Gannon, A. M., Gagné, R. et al. (2019). Hepatic transcriptional dose-response analysis of male and female fischer rats exposed to hexabromocyclododecane. Food Chem Toxicol 133, 110262. doi:10.1016/j.fct.2018.12.032
Franzosa, J. A., Bonzo, J. A., Jack, J. et al. (2021). High-throughput toxicogenomic screening of chemicals in the environment using metabolically competent hepatic cell cultures. NPJ Syst Biol Appl 7, 7. doi:10.1038/s41540-020-00166-2
Geci, R., Gadaleta, D., de Lomana, M. G. et al. (2024). Systematic evaluation of high-throughput PBK modelling strategies for the prediction of intravenous and oral pharmacokinetics in humans. Arch Toxicol 98, 2659-2676. doi:10.1007/s00204-024-03764-9
Gilmour, N., Kern, P. S., Alépée, N. et al. (2020). Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul Toxicol Pharmacol 116, 104721. doi:10.1016/j.yrtph.2020.104721
Gilmour, N., Alépée, N., Hoffmann, S. et al. (2023). Applying a next generation risk assessment framework for skin sensitisation to inconsistent new approach methodology information. ALTEX 40, 439-451. doi:10.14573/altex.2211161
Gwinn, W. M., Auerbach, S. S., Parham, F. et al. (2020). Evaluation of 5-day in vivo rat liver and kidney with high-throughput transcriptomics for estimating benchmark doses of apical outcomes. Toxicol Sci 176, 343-354. doi:10.1093/toxsci/kfaa081
Harrill, J. A., Everett, L. J., Haggard, D. E. et al. (2021). High-throughput transcriptomics platform for screening environmental chemicals. Toxicol Sci 181, 68-89. doi:10.1093/toxsci/kfab009
Hatherell, S., Baltazar, M. T., Reynolds, J. et al. (2020). Identifying and characterizing stress pathways of concern for consumer safety in next-generation risk assessment. Toxicol Sci 176, 11-33. doi:10.1093/toxsci/kfaa054
Hewitt, N. J., Troutman, J., Przibilla, J. et al. (2022). Use of in vitro metabolism and biokinetics assays to refine predicted in vivo and in vitro internal exposure to the cosmetic ingredient, phenoxyethanol, for use in risk assessment. Regul Toxicol Pharmacol 131, 105132. doi:10.1016/j.yrtph.2022.105132
House, J. S., Grimm, F. A., Klaren, W. D. et al. (2022). Grouping of uvcb substances with dose-response transcriptomics data from human cell-based assays. ALTEX 39, 388–404. doi:10.14573/altex.2107051
Iacono, G., Guerra, B., Kass, G. et al. (2022). Theme (concept) paper-application of omics and bioinformatics approaches: Towards next generation risk assessment. EFSA Supporting Publications 19,
Ietswaart, R., Arat, S., Chen, A. X. et al. (2020). Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology. EBioMedicine 57, 102837. doi:10.1016/j.ebiom.2020.102837
Jamalpoor, A., Hartvelt, S., Dimopoulou, M. et al. (2022). A novel human stem cell-based biomarker assay for in vitro assessment of developmental toxicity. Birth Defects Res 114, 1210-1228. doi:10.1002/bdr2.2001
Jenkinson, S., Schmidt, F., Rosenbrier Ribeiro, L. et al. (2020). A practical guide to secondary pharmacology in drug discovery. J Pharmacol Toxicol Meth 105, 106869. doi:10.1016/j.vascn.2020.106869
Jomaa, B., de Haan, L. H., Peijnenburg, A. A. et al. (2015). Simple and rapid in vitro assay for detecting human thyroid peroxidase disruption. ALTEX 32, 191-200. doi:10.14573/altex.1412201
Judson, R. S., Smith, D., DeVito, M. et al. (2024). A comparison of in vitro points of departure with human blood levels for per- and polyfluoroalkyl substances (pfas). Toxics 12, doi:10.3390/toxics12040271
Klotz, L.-O. and Steinbrenner, H. (2017). Cellular adaptation to xenobiotics: Interplay between xenosensors, reactive oxygen species and foxo transcription factors. Redox Biology 13, 646-654. doi:10.1016/j.redox.2017.07.015
Le Vee, M., Jigorel, E., Glaise, D. et al. (2006). Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma heparg cell line. Eur J Pharm Sci 28, 109-117. doi:10.1016/j.ejps.2006.01.004
Love, M. I., Huber, W. and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550. doi:10.1186/s13059-014-0550-8
Lynch, J. J., 3rd, Van Vleet, T. R., Mittelstadt, S. W. et al. (2017). Potential functional and pathological side effects related to off-target pharmacological activity. J Pharmacol Toxicol Meth 87, 108-126. doi:10.1016/j.vascn.2017.02.020
Mansouri, K., Grulke, C. M., Judson, R. S. et al. (2018). Opera models for predicting physicochemical properties and environmental fate endpoints. J Cheminform 10, 10. doi:10.1186/s13321-018-0263-1
Mansouri, K., Kleinstreuer, N., Abdelaziz, A. M. et al. (2020). Compara: Collaborative modeling project for androgen receptor activity. Environ Health Perspect 128, 027002. doi:doi:10.1289/EHP5580
Middleton, A. M., Reynolds, J., Cable, S. et al. (2022). Are non-animal systemic safety assessments protective? A toolbox and workflow. Toxicological Sciences 189, 124-147. doi:10.1093/toxsci/kfac068
Moreau, M., Jamalpoor, A., Hall, J. C. et al. (2023). Animal-free assessment of developmental toxicity: Combining pbpk modeling with the reprotracker assay. Toxicology 500, 153684. doi:10.1016/j.tox.2023.153684
Müller, I., Carmichael, P., Dent, M. et al. (submitted). An advancement in developmental and reproductive toxicity (DART) risk assessment: Evaluation of a bioactivity and exposure-based NAM toolbox.
Najjar, A., Kühnl, J., Lange, D. et al. (2024). Next-generation risk assessment read-across case study: Application of a 10-step framework to derive a safe concentration of daidzein in a body lotion. Front Pharmacol 15, 1421601. doi:10.3389/fphar.2024.1421601
Nicol, B., Vandenbossche-Goddard, E., Thorpe, C. et al. (2024). A workflow to practically apply true dose considerations to in vitro testing for next generation risk assessment. Toxicology 505, 153826. doi:10.1016/j.tox.2024.153826
Niemeijer, M., Więcek, W., Fu, S. et al. (2024). Mapping interindividual variability of toxicodynamics using high-throughput transcriptomics and primary human hepatocytes from fifty donors. Environ Health Perspect 132, 37005. doi:10.1289/ehp11891
Nyffeler, J., Willis, C., Lougee, R. et al. (2020). Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling. Toxicol Appl Pharmacol 389, 114876. doi:10.1016/j.taap.2019.114876
Nyffeler, J., Willis, C., Harris, F. R. et al. (2023). Application of cell painting for chemical hazard evaluation in support of screening-level chemical assessments. Toxicol Appl Pharmacol 468, 116513. doi:10.1016/j.taap.2023.116513
OECD (2021a). Guidance document on the characterisation, validation and reporting of physiologically based kinetic (pbk) models for regulatory purposes, oecd series on testing and assessment, no. 331, oecd publishing, paris, doi:10.1787/d0de241f-en
OECD (2021b). No. 349. Case study on use of an integrated approach for testing and assessment (iata) for systemic toxicity of phenoxyethanol when included at 1% in a body. https://one.oecd.org/document/ENV/CBC/MONO(2021)35/en/pdf
OECD (2023a). Guideline no. 497: Defined approaches on skin sensitisation, oecd guidelines for the testing of chemicals, section 4, oecd publishing, paris, doi:10.1787/b92879a4-en.
OECD (2023b). Test no. 456: H295r steroidogenesis assay. Vol. doi:10.1787/9789264122642-en
Ouedraogo, G., Alexander-White, C., Bury, D. et al. (2022). Read-across and new approach methodologies applied in a 10-step framework for cosmetics safety assessment – a case study with parabens. Regul Toxicol Pharmacol 132, 105161. doi:10.1016/j.yrtph.2022.105161
Paini, A., Tan, Y. M., Sachana, M. et al. (2021). Gaining acceptance in next generation pbk modelling approaches for regulatory assessments - an oecd international effort. Comput Toxicol 18, 100163. doi:10.1016/j.comtox.2021.100163
Pallocca, G., Moné, M. J., Kamp, H. et al. (2022). Next-generation risk assessment of chemicals – rolling out a human-centric testing strategy to drive 3r implementation: The risk-hunt3r project perspective. ALTEX 39, 419-426. doi:10.14573/altex.2204051
Paul Friedman, K., Gagne, M., Loo, L.-H. et al. (2019). Utility of in vitro bioactivity as a lower bound estimate of in vivo adverse effect levels and in risk-based prioritization. Toxicol Sci 173, 202-225. doi:10.1093/toxsci/kfz201
Pfuhler, S., Pirow, R., Downs, T. R. et al. (2020). Validation of the 3d reconstructed human skin comet assay, an animal-free alternative for following-up positive results from standard in vitro genotoxicity assays. Mutagenesis 36, 19-35. doi:10.1093/mutage/geaa009
Punt, A., Louisse, J., Beekmann, K. et al. (2022). Predictive performance of next generation human physiologically based kinetic (pbk) models based on in vitro and in silico input data. ALTEX 39, 221-234. doi:10.14573/altex.2108301
Punt, A., Baltazar, M. T., Nicol, B. et al. (submitted). Establishing scientific confidence in predicted internal exposure estimates in the absence of in vivo kinetic data: A case study with benzophenone-4 in sunscreens.
Rajagopal, R., Baltazar, M. T., Carmichael, P. L. et al. (2022). Beyond aops: A mechanistic evaluation of nams in dart testing. Front Toxicol 4, doi:10.3389/ftox.2022.838466
Ramaiahgari, S. C., Auerbach, S. S., Saddler, T. O. et al. (2019). The power of resolution: Contextualized understanding of biological responses to liver injury chemicals using high-throughput transcriptomics and benchmark concentration modeling. Toxicol Sci 169, 553-566. doi:10.1093/toxsci/kfz065
Reardon, A. J. F., Farmahin, R., Williams, A. et al. (2023). From vision toward best practices: Evaluating in vitro transcriptomic points of departure for application in risk assessment using a uniform workflow. Front Toxicol 5, 1194895. doi:10.3389/ftox.2023.1194895
Reinke, E. N., Reynolds, J., Gilmour, N. et al. (2025). The skin allergy risk assessment-integrated chemical environment (sara-ice) defined approach to derive points of departure for skin sensitization. Curr Res Toxicol 8, 100205. doi:10.1016/j.crtox.2024.100205
Reynolds, J., Malcomber, S. and White, A. (2020). A bayesian approach for inferring global points of departure from transcriptomics data. Computat Toxicol 16, 100138. doi:10.1016/j.comtox.2020.100138
Rogers, J. D., Leusch, F. D. L., Chambers, B. et al. (2024). High-throughput transcriptomics of water extracts detects reductions in biological activity with water treatment processes. Environ Sci Technol 58, 2027-2037. doi:10.1021/acs.est.3c07525
Rogiers, V., Benfenati, E., Bernauer, U. et al. (2020). The way forward for assessing the human health safety of cosmetics in the eu - workshop proceedings. Toxicology 436, 152421. doi:10.1016/j.tox.2020.152421
SCCS (2023). SCCS (Scientific Committee on Consumer Safety), Notes of guidance for the testing of cosmetic ingredients and their safety evaluation 12th revision, 15 May 2023, Corrigendum 1 on 26 October 2023, Corrigendum 2 on 21 December 2023, sccs/1647/22.
SCCS (2024). SCCS (scientific committee on consumer safety) opinion on benzophenone – 4 (cas no. 4065-45-6, ec no. 223-772-2) used in cosmetics products. Preliminary version of 14 december 2023, final version of 27 march 2024, sccs/1660/23.
Simmons, S. O., Fan, C. Y. and Ramabhadran, R. (2009). Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 111, 202-225. doi:10.1093/toxsci/kfp140
Smit, I. A., Afzal, A. M., Allen, C. H. G. et al. (2021). Systematic analysis of protein targets associated with adverse events of drugs from clinical trials and postmarketing reports. Chem Res Toxicol 34, 365-384. doi:10.1021/acs.chemrestox.0c00294
Thomas, R. S., Clewell, H. J., 3rd, Allen, B. C. et al. (2011). Application of transcriptional benchmark dose values in quantitative cancer and noncancer risk assessment. Toxicol Sci 120, 194-205. doi:10.1093/toxsci/kfq355
Thomas, R. S., Philbert, M. A., Auerbach, S. S. et al. (2013). Incorporating new technologies into toxicity testing and risk assessment: Moving from 21st century vision to a data-driven framework. Toxicol Sci 136, 4-18. doi:10.1093/toxsci/kft178
Thomas, R. S., Bahadori, T., Buckley, T. J. et al. (2019). The next generation blueprint of computational toxicology at the u.S. Environmental protection agency. Toxicol Sci 169, 317-332. doi:10.1093/toxsci/kfz058
Tsai, H.-H. D., Ford, L. C., Burnett, S. D. et al. (2024). Informing hazard identification and risk characterization of environmental chemicals by combining transcriptomic and functional data from human-induced pluripotent stem-cell-derived cardiomyocytes. Chem Res Toxicol 37, 1428-1444. doi:10.1021/acs.chemrestox.4c00193
Uhlén, M., Fagerberg, L., Hallström, B. M. et al. (2015). Proteomics. Tissue-based map of the human proteome. Science 347, 1260419. doi:10.1126/science.1260419
van der Burg, B., Winter, R., Weimer, M. et al. (2010). Optimization and prevalidation of the in vitro eralpha calux method to test estrogenic and antiestrogenic activity of compounds. Reprod Toxicol 30, 73-80. doi:10.1016/j.reprotox.2010.04.007
van der Zalm, A. J., Barroso, J., Browne, P. et al. (2022). A framework for establishing scientific confidence in new approach methodologies. Arch Toxicol 96, 2865-2879. doi:10.1007/s00204-022-03365-4
van Vugt-Lussenburg, B. M. A., van der Lee, R. B., Man, H.-Y. et al. (2018). Incorporation of metabolic enzymes to improve predictivity of reporter gene assay results for estrogenic and anti-androgenic activity. Reprod Toxicol 75, 40-48. doi:10.1016/j.reprotox.2017.11.005
Vrijenhoek, N. G., Wehr, M. M., Kunnen, S. J. et al. (2022). Application of high-throughput transcriptomics for mechanism-based biological read-across of short-chain carboxylic acid analogues of valproic acid. ALTEX 39, 207-220. doi:10.14573/altex.2107261
Whitebread, S., Dumotier, B., Armstrong, D. et al. (2016). Secondary pharmacology: Screening and interpretation of off-target activities – focus on translation. Drug Discov Today 21, 1232-1242. doi:10.1016/j.drudis.2016.04.021
Wink, S., Hiemstra, S. W., Huppelschoten, S. et al. (2018). Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury. Arch Toxicol 92, 1797-1814. doi:10.1007/s00204-018-2178-z
Wood, A., Breffa, C., Chaine, C. et al. (2024). Next generation risk assessment for occupational chemical safety – a real world example with sodium-2-hydroxyethane sulfonate. Toxicology 506, 153835. doi:10.1016/j.tox.2024.153835
Yeakley, J. M., Shepard, P. J., Goyena, D. E. et al. (2017). A trichostatin a expression signature identified by tempo-seq targeted whole transcriptome profiling. PLOS ONE 12, e0178302. doi:10.1371/journal.pone.0178302
Zobl, W., Bitsch, A., Blum, J. et al. (2024). Protectiveness of nam-based hazard assessment – which testing scope is required? ALTEX 41, 302-319. doi:10.14573/altex.2309081