From cellular perturbation to probabilistic risk assessments

Main Article Content

Alexandra Maertens, Breanne Kincaid, Eric Bridgeford, Celine Brochot, Arthur de Carvalho e Silva, Jean-Lou C. M. Dorne, Liesbet Geris, Trine Husøy, Nicole Kleinstreuer, Luiz C. M. Ladeira, Alistair Middleton, Joe Reynolds, Blanca Rodriguez, Erwin L. Roggen, Giulia Russo, Kris Thayer, Thomas Hartung
[show affiliations]

Abstract

Chemical risk assessment is evolving from traditional deterministic approaches to embrace probabilistic methodologies, where risk of hazard manifestation is understood as a more or less probable event depending on exposure, individual factors, and stochastic processes. This is driven by advancements in human stem cells, complex tissue engineering, high-performance computing, and cheminformatics, and is more recently facilitated by large-scale artificial intelligence models. These innovations enable a more nuanced understanding of chemical hazards, capturing the complexity of biological responses and variability within populations. However, each technology comes with its own uncertainties impacting on the estimation of hazard probabilities. This shift addresses the limitations of point estimates and thresholds that oversimplify hazard assessment, allowing for the integration of kinetic variability and uncertainty metrics into risk models. By leveraging modern technologies and expansive toxicological data, probabilistic approaches offer a comprehensive evaluation of chemical safety. This paper summarizes a workshop held in 2023 and discusses the technological and data-driven enablers, and the challenges faced in their implementation, with particular focus on perturbation of biology as the basis of hazard estimates. The future of toxicological risk assessment lies in the successful integration of these probabilistic models, promising more accurate and holistic hazard evaluations.


Plain language summary
Understanding chemical risks is key to public health. Traditional risk assessments rely on fixed safety margins and animal tests, which can miss complex human responses. Probabilistic risk assessment uses advanced tools – human stem cells, organ‑on‑chip systems, and AI – to estimate the likelihood of harm across different scenarios. By modeling individual variability (genetics, exposures) and quantifying uncertainty, it provides nuanced risk estimates rather than binary “safe/unsafe” labels. This approach increases transparency, shows confidence intervals, and reduces animal testing by integrating human‑relevant data. Challenges include defining harm thresholds, integrating diverse datasets, and gaining regulatory acceptance. Workshops like the 2023 CAAT-ONTOX meeting in Italy highlighted how measuring biological perturbations (e.g., molecular or cellular changes) informs probability of adverse outcomes. As technologies and data improve, probabilistic methods promise more realistic, protective chemical safety evaluations that reflect real‑world human diversity.

Article Details

How to Cite
Maertens, A. (2025) “From cellular perturbation to probabilistic risk assessments”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2501291.
Section
Articles
References

Alexandrov, L. B., Kim, J., Haradhvala, N. J. et al. (2020). The repertoire of mutational signatures in human cancer. Nature 578, 94-101. doi:10.1038/s41586-020-1943-3

Alhossary, A., Handoko, S. D., Mu, Y. et al. (2015). Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics 31, 2214-2216. doi:10.1093/bioinformatics/btv082

Ames, B. N. and Gold, L. S. (1990). Misconceptions on pollution and the causes of cancer. Angew Chem Int Ed Engl 29, 1197-1208. doi:10.1002/anie.199011971

Ankley, G. T., Bennett, R. S., Erickson, R. J. et al. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29, 730-741. doi:10.1002/etc.34

Aranda-Anzaldo, A. and Dent, M. A. R. (2018). Landscaping the epigenetic landscape of cancer. Prog Biophys Mol Biol 140, 155-174. doi:10.1016/j.pbiomolbio.2018.06.005

Bachman, J. A., Gyori, B. M. and Sorger, P. K. (2023). Automated assembly of molecular mechanisms at scale from text mining and curated databases. Mol Syst Biol 19, e11325. doi:10.15252/msb.202211325

Bjørk, M.-H., Zoega, H., Leinonen, M. K. et al. (2022). Association of prenatal exposure to antiseizure medication with risk of autism and intellectual disability. JAMA Neurol 79, 672-681. doi:10.1001/jamaneurol.2022.1269

Blum, A., Behl, M., Birnbaum, L. et al. (2019). Organophosphate ester flame retardants: Are they a regrettable substitution for polybrominated diphenyl ethers? Environ Sci Technol Lett 6, 638-649. doi:10.1021/acs.estlett.9b00582

Bønnelykke, K., Sparks, R., Waage, J. et al. (2015). Genetics of allergy and allergic sensitization: Common variants, rare mutations. Curr Opin Immunol 36, 115-126. doi:10.1016/j.coi.2015.08.002

Bordukova, M., Makarov, N., Rodriguez-Esteban, R. et al. (2024). Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discov 19, 33-42. doi:10.1080/17460441.2023.2273839

Bouhifd, M., Hogberg, H. T., Kleensang, A. et al. (2014). Mapping the human toxome by systems toxicology. Basic Clin Pharmacol Toxicol 115, 1-8. doi:10.1111/bcpt.12198

Bouhifd, M., Andersen, M. E., Baghdikian, C. et al. (2015). The human toxome project. ALTEX 32, 112-124. doi:10.14573/altex.1502091

Brazma, A., Hingamp, P., Quackenbush, J. et al. (2001). Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29, 365-371. doi:10.1038/ng1201-365

Calabrese, E. J. (2005). Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138, 379-411. doi:10.1016/j.envpol.2004.10.001

Celardo, I., Aschner, M., Ashton, R. S., et al. (2025). Developmental neurotoxicity (DNT): A call for implementation of new approach methodologies for regulatory purposes: Summary of the 5th International Conference on DNT Testing. ALTEX 42, 323-349. doi:10.14573/altex.2503191

Chandrasekaran, S. N., Cimini, B. A., Goodale, A. et al. (2024). Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations. Nat Methods 21, 1114-1121. doi:10.1038/s41592-024-02241-6

Chernoff, J. (2021). The two-hit theory hits 50. Mol Biol Cell 32, rt1. doi:10.1091/mbc.e21-08-0407

Christensen, J., Grønborg, T. K., Sørensen, M. J. et al. (2013). Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. Surv Anesthesiol 57, 292-293. doi:10.1097/01.sa.0000435536.89926.0a

Cöllen, E., Bartmann, K., Blum, J. et al. (2025). Mapping out strategies to further develop human-relevant, new approach methodology (NAM)-based developmental neurotoxicity (DNT) testing. ALTEX 42, 204-223. doi:10.14573/altex.2410112

Committee on the Design and Evaluation of Safer Chemical Substitutions (2014). Overview of the GHS Classification Scheme in Hazard Classification. Washington, DC, USA: National Academies Press.

Corradi, M., Luechtefeld, T., de Haan, A. M. et al. (2024). The application of natural language processing for the extraction of mechanistic information in toxicology. Front Toxicol 6, 1393662. doi:10.3389/ftox.2024.1393662

Coupland, C. A. C., Hill, T., Dening, T. et al. (2019). Anticholinergic drug exposure and the risk of dementia: A nested case-control study. JAMA Intern Med 179, 1084-1093. doi:10.1001/jamainternmed.2019.0677

Cozzini, P., Cavaliere, F., Spaggiari, G. et al. (2022). Computational methods on food contact chemicals: Big data and in silico screening on nuclear receptors family. Chemosphere 292, 133422. doi:10.1016/j.chemosphere.2021.133422

Craig, M., Gevertz, J. L., Kareva, I. et al. (2023) A practical guide for the generation of model-based virtual clinical trials. Front Syst Biol 3, 1174647. doi:10.3389/fsysb.2023.1174647

Dankovic, D. A., Naumann, B. D., Maier, A. et al. (2015). The scientific basis of uncertainty factors used in setting occupational exposure limits. J Occup Environ Hyg 12, Suppl 1, S55-68. doi:10.1080/15459624.2015.1060325

Davoren, M. J. and Schiestl, R. H. (2018). Glyphosate-based herbicides and cancer risk: A post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis 39, 1207-1215. doi:10.1093/carcin/bgy105

de Bruyn Kops, C., Šícho, M., Mazzolari, A. et al. (2021). GLORYx: Prediction of the metabolites resulting from phase 1 and phase 2 biotransformations of xenobiotics. Chem Res Toxicol 32, 286-299. doi:10.1021/acs.chemrestox.0c00224

de Vries, R. B. M., Angrish, M., Browne, P. et al. (2021). Applying evidence-based methods to the development and use of adverse outcome pathways construct mechanistic frameworks for the development and use of non-animal toxicity tests. ALTEX 38, 336-347. doi:10.14573/altex.2101211

Debad, S. J., Aungst, J., Carstens, K. et al. (2025). State of the science on assessing developmental neurotoxicity using new approach methods. ALTEX 42, 121-144. doi:10.14573/altex.2410231

Dehaan, R. L. (1971). Toxicity of tissue culture media exposed to polyvinyl chloride plastic. Nat New Biol 231, 85-86. doi:10.1038/newbio231085a0

Djoumbou-Feunang, Y., Fiamoncini, J., Gil-de-la-Fuente, A. et al. (2019). BioTransformer: A comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminform 11, 2. doi:10.1186/s13321-018-0324-5

Donovan, K. A., An, J., Nowak, R. P. et al. (2018). Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife 7, e38430. doi:10.7554/eLife.38430

EFSA (2009). Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on cadmium in food. EFSA J 7, 980. doi:10.2903/j.efsa.2009.980

EFSA (2021). Development of integrated approaches to testing and assessment (IATA) case studies on developmental neurotoxicity (DNT) risk assessment. EFSA J 19, 6599. doi:10.2903/j.efsa.2021.6599

Flynn, D. (2019). No cancer warnings required on coffee sold in California after all. Food Safety News.

Gao, Y., Mughal, Z., Jaramillo-Villegas, J. A. et al. (2024). BioBricks.Ai: A versioned data registry for life sciences data assets. ArXiv.

Gaylor, D. W. (2005). Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens? Regul Toxicol Pharmacol 41, 128-133. doi:10.1016/j.yrtph.2004.11.001

Golden, E., Ukaegbu, D. C., Ranslow, P. et al. (2023). The good, the bad, and the perplexing: Structural alerts and read-across for predicting skin sensitization using human data. Chem Res Toxicol 36, 734-746. doi:10.1021/acs.chemrestox.2c00383

Golden, E., Allen, D., Amberg, A. et al. (2024). Toward implementing virtual control groups in nonclinical safety studies. ALTEX 41, 282-301. doi:10.14573/altex.2310041

Gottmann, E., Kramer, S., Pfahringer, B. et al. (2001). Data quality in predictive toxicology: Reproducibility of rodent carcinogenicity experiments. Environ Health Perspect 109, 509-514. doi:10.1289/ehp.01109509

Grabowska, M. E., Chun, B., Moya, R. et al. (2021). Computational model of cardiomyocyte apoptosis identifies mechanisms of tyrosine kinase inhibitor-induced cardiotoxicity. J Mol Cell Cardiol 155, 66-77. doi:10.1016/j.yjmcc.2021.02.014

Grimstein, M., Yang, Y., Zhang, X. et al. (2019). Physiologically based pharmacokinetic modeling in regulatory science: An update from the U.S. food and Drug Administration’s Office of Clinical Pharmacology. J Pharm Sci 108, 21-25. doi:10.1016/j.xphs.2018.10.033

Gyori, B. M., Bachman, J. A., Subramanian, K. et al. (2017). From word models to executable models of signaling networks using automated assembly. Mol Syst Biol 13, 954. doi:10.15252/msb.20177651

Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discov 12, 31-46. doi:10.1158/2159-8290.cd-21-1059

Hartung, T. and McBride, M. (2011). Food for thought… on mapping the human toxome. ALTEX 28, 83-93. doi:10.14573/altex.2011.2.083

Hartung, T. (2016). Making big sense from big data in toxicology by read-across. ALTEX 33, 83-93. doi:10.14573/altex.1603091

Hartung, T., FitzGerald, R., Jennings, P. et al. (2017). Systems toxicology – Real world applications and opportunities. Chem Res Toxicol 30, 870-882. doi:10.1021/acs.chemrestox.7b00003

Hartung, T. (2023a). A call for a human exposome project. ALTEX 40, 4-33. doi:10.14573/altex.2301061

Hartung, T. (2023b). ToxAIcology – The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. ALTEX 40, 559-570. doi:10.14573/altex.2309191

Hartung, T. (2023c). Artifical intelligence as the new frontier in chemical risk assessment. Front Artif Intell 6, 1269932. doi:10.3389/frai.2023.1269932

Hartung, T. and Kleinstreuer, N. (2025). Challenges and opportunities for validation of AI-based new approach methods. ALTEX 42, 3-21. doi:10.14573/altex.2412291

Hemedan, A. A., Schneider, R. and Ostaszewski, M. (2023). Applications of Boolean modeling to study the dynamics of a complex disease and therapeutics responses. Front Bioinform 3, 1189723. doi:10.3389/fbinf.2023.1189723

Hemedan, A. A., Satagopam, V., Schneider, R. et al. (2024). Cohort-specific boolean models highlight different regulatory modules during Parkinson’s disease progression. iScience 27, 110956. doi:10.1016/j.isci.2024.110956

Hoffmann, S., de Vries, R. B. M., Stephens, M. L. et al. (2017). A primer on systematic reviews in toxicology. Arch Toxicol 91, 2551-2575. doi:10.1007/s00204-017-1980-3

Jentink, J., Loane, M. A., Dolk, H. et al. (2010). Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med 362, 2185-2193. doi:10.1056/NEJMoa0907328

Jumper, J., Evans, R., Pritzel, A. et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. doi:10.1038/s41586-021-03819-2

Kafka, P. (1998). Observations on risk management policies, focusing on experiences from their implementation and use in the field of nuclear technology. In: Proceedings of ESA Risk Management Workshop, Noordwijk (85-100). European Space Agency, ESA-ESTEC.

Kincaid, B., Piechota, P., Golden, E. et al. (2023). Using in silico tools to predict flame retardant metabolites for more informative exposomics-based approaches. Front Toxicol 5, 1216802. doi:10.3389/ftox.2023.1216802

King, C., Fowler, J. C., Abnizova, I. et al. (2023). Somatic mutations in facial skin from countries of contrasting skin cancer risk. Nat Genet 55, 1440-1447. doi:10.1038/s41588-023-01468-x

Kleensang, A., Maertens, A., Rosenberg, M. et al. (2014). t4 workshop report: Pathways of toxicity. ALTEX 31, 53-61. doi:10.14573/altex.1309261

Kleensang, A., Vantangoli, M. M., Odwin-DaCosta, S. et al. (2016). Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function. Sci Rep 6, 28994. doi:10.1038/srep28994

Kleinstreuer, N. and Hartung, T. (2024). Artificial Intelligence (AI) – It’s the end of the tox as we know it (and I feel fine) – AI for predictive toxicology. Arch Toxicol 98, 735-754. doi:10.1007/s00204-023-03666-2

Knudson, A. G. (1996). Hereditary cancer: Two hits revisited. J Cancer Res Clin Oncol 122, 135-140. doi:10.1007/BF01366952

Krewski, D., Acosta, D., Jr, Andersen, M. et al. (2010). Toxicity testing in the 21st century: A vision and a strategy. J Toxicol Environ Health B Crit Rev 13, 51-138. doi:10.1080/10937404.2010.483176

Leist, M., Ghallab, A., Graepel, R. et al. (2017). Adverse outcome pathways: Opportunities, limitations and open questions. Arch Toxicol 31, 221-229. doi:10.1007/s00204-017-2045-3

Letort, G., Montagud, A., Stoll, G. et al. (2019). PhysiBoSS: A multi-scale agent-based modelling framework integrating physical dimension and cell signalling. Bioinformatics 35, 1188-1196. doi:10.1093/bioinformatics/bty766

Liao, Z., You, R., Huang, X. et al. (2019). DeepDock: Enhancing ligand-protein interaction prediction by a combination of ligand and structure information. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 311-317. doi:10.1109/bibm47256.2019.8983365

Linkov, I., Massey, O., Keisler, J. et al. (2015). From “weight of evidence” to quantitative data integration using multicriteria decision analysis and Bayesian methods. ALTEX 32, 3-8. doi:10.14573/altex.1412231

Loizou, G. D. (2016). Animal-free chemical safety assessment. Front Pharmacol 7, 218. doi:10.3389/fphar.2016.00218

Luechtefeld, T., Maertens, A., McKim, J. M. et al. (2015). Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships. J Appl Toxicol 35, 1361-1371. doi:10.1002/jat.3172

Luechtefeld, T., Maertens, A., Russo, D. P. et al. (2016a). Analysis of Draize eye irritation testing and its prediction by mining publicly available 2008-2014 REACH data. ALTEX 33, 123-134. doi:10.14573/altex.1510053

Luechtefeld, T., Maertens, A., Russo, D. P. et al. (2016b). Global analysis of publicly available safety data for 9,801 substances registered under REACH from 2008-2014. ALTEX 33, 95-109. doi:10.14573/altex.1510052

Luechtefeld, T. and Hartung, T. (2017). Computational approaches to chemical hazard assessment. ALTEX 34, 459-478. doi:10.14573/altex.1710141

Luechtefeld, T., Marsh, D., Rowlands, C. et al. (2018a). Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci 165, 198-212. doi:10.1093/toxsci/kfy152

Luechtefeld, T., Rowlands, C. and Hartung, T. (2018b). Big-data and machine learning to revamp computational toxicology and its use in risk assessment. Toxicol Res 7, 732-744, doi:10.1039/c8tx00051d

Maertens, A., Luechtefeld, T., Kleensang, A. et al. (2015). MPTP’s pathway of toxicity indicates central role of transcription factor SP1. Arch Toxicol 89, 743-755. doi:10.1007/s00204-015-1509-6

Maertens, A., Bouhifd, M., Zhao, L. et al. (2017). Metabolomic network analysis of estrogen-stimulated MCF-7 cells: A comparison of overrepresentation analysis, quantitative enrichment analysis and pathway analysis versus metabolite network analysis. Arch Toxicol 91, 217-230. doi:10.1007/s00204-016-1695-x

Maertens, A., Golden, E., Luechtefeld, T. H. et al. (2022). Probabilistic risk assessment – The keystone for the future of toxicology. ALTEX 39, 3-9. doi:10.14573/altex.2201081

Marx, U., Andersson, T.B., Bahinski, A. et al. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing using animals. ALTEX 33, 272-321. doi:10.14573/altex.1603161

Marx, U., Akabane, T., Andersson, T. B. et al. (2020). Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX 37, 364-394. doi:10.14573/altex.2001241

Marx, U., Beken, S., Chen, Z. et al. (2025). Biology-inspired dynamic microphysiological system approaches to revolutionize basic research, healthcare and animal welfare. ALTEX 42, 204-223. doi:10.14573/altex.2410112

McNally, K. and Loizou, G. D. (2015). A probabilistic model of human variability in physiology for future application to dose reconstruction and QIVIVE. Front Pharmacol 6, 213. doi:10.3389/fphar.2015.00213

Meigs, L., Smirnova, L., Rovida, C. et al. (2018). Animal testing and its alternatives – The most important omics is economics. ALTEX 35, 275-305. doi:10.14573/altex.1807041

Montagud, A., Béal, J., Tobalina, L. et al. (2022). Patient-specific Boolean models of signalling networks guide personalised treatments. Elife 11, e72626 doi:10.7554/eLife.72626.sa2

Musuamba, F. T., Skottheim Rusten, I., Lesage, R. et al. (2021). Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: Building model credibility. CPT Pharmacometrics Syst Pharmacol 10, 804-825. doi:10.1002/psp4.12669

Niarakis, A., Ostaszewski, M., Mazein, A. et al. (2023). Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol 14, 1282859. doi:10.3389/fimmu.2023.1282859

O’Hara, T., Virág, L., Varró, A. et al. (2011). Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLoS Comput Biol 7, e1002061. doi:10.1371/journal.pcbi.1002061

Osimitz, T. G., Droege, W., Boobis, A. R. et al. (2013). Evaluation of the utility of the lifetime mouse bioassay in the identification of cancer hazards for humans. Food Chem Toxicol 60, 550-562. doi:10.1016/j.fct.2013.08.020

Paller, C. J., Tukachinsky, H., Maertens, A. et al. (2024). Pan-cancer interrogation of MUTYH variants reveals biallelic inactivation and defective base excision repair across a spectrum of solid tumors. JCO Precis Oncol 8, e2300251. doi:10.1200/PO.23.00251

Pamies, D. and Hartung, T. (2017). 21st century cell culture for 21st century toxicology. Chem Res Toxicol 30, 43-52. doi:10.1021/acs.chemrestox.6b00269

Parreno, V., Loubiere, V., Schuettengruber, B. et al. (2024). Transient loss of Polycomb components induces an epigenetic cancer fate. Nature 629, 688-696. doi:10.1038/s41586-024-07328-w

Passini, E., Britton, O. J., Lu, H. R. et al. (2017). Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front Physiol 8, 668. doi:10.3389/fphys.2017.00668

Place, T. L., Domann, F. E. and Case, A. J. (2017). Limitations of oxygen delivery to cells in culture: An underappreciated problem in basic and translational research. Free Radic Biol Med 113, 311-322. doi:10.1016/j.freeradbiomed.2017.10.003

Reynolds, E. H. and Green, R. (2020). Valproate and folate: Congenital and developmental risks. Epilepsy Behav 108, 107068. doi:10.1016/j.yebeh.2020.107068

Ross, B. C., Boguslav, M., Weeks, H. et al. (2018). Simulating heterogeneous populations using Boolean models. BMC Syst Biol 12, 64. doi:10.1186/s12918-018-0591-9

Sillé, F. C. M., Karakitsios, S., Kleensang, A. et al. (2020). The exposome – A new approach for risk assessment. ALTEX 37, 3-23. doi:10.14573/altex.2001051

Sillé, F. C. M., Busquet, F., Fitzpatrick, S. et al. (2024). The implementation moonshot project for alternative chemical testing (IMPACT) toward a human exposome project. ALTEX 41, 344-362. doi:10.14573/altex.2407081

Silver, N. (2012). The Signal and the Noise: Why So Many Predictions Fail – But Some Don’t. Penguin.

Sluka, J. P., Fu, X., Swat, M. et al. (2016). A liver-centric multiscale modeling framework for xenobiotics. PLoS One 11, e0162428. doi:10.1371/journal.pone.0162428

Smirnova, L., Hogberg, H. T., Leist, M. and Hartung, T. (2014). Developmental neurotoxicity – challenges in the 21st century and in vitro opportunities. ALTEX 31, 129-156. doi:10.14573/altex.1403271

Smirnova, L., Kleinstreuer, N., Corvi, R. et al. (2018). 3S – Systematic, systemic, and systems biology and toxicology. ALTEX 35, 139-162. doi:10.14573/altex.1804051

Smirnova, L., Hogberg, H. T., Leist, M. and Hartung, T. (2024). Revolutionizing developmental neurotoxicity testing – a journey from animal models to advanced in vitro systems. ALTEX 41, 152-178. doi:10.14573/altex.2403281

Suciu, I., Pamies, D., Peruzzo, R. et al. (2023). G × E interactions as a basis for toxicological uncertainty. Arch Toxicol 97, 2035-2049. doi:10.1007/s00204-023-03500-9

Sun, J. X., He, Y., Sanford, E. et al. (2018). A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal. PLoS Comput Biol 14, e1005965. doi:10.1371/journal.pcbi.1005965

Tomasetti, C. and Vogelstein, B. (2015). Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78-81. doi:10.1126/science.1260825

Tomczak, K., Czerwińka, P. and Wiznerowicz, M. (2015). The cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp Oncol 19, A68-77. doi:10.5114/wo.2014.47136

Tran, V., Kim, R., Maertens, M. et al. (2021). Similarities and differences in gene expression networks between the breast cancer cell line Michigan cancer foundation-7 and invasive human breast cancer tissues. Front Artif Intell 4, 674370. doi:10.3389/frai.2021.674370

Trosko, J. E. and Upham, B. L. (2005). The emperor wears no clothes in the field of carcinogen risk assessment: Ignored concepts in cancer risk assessment. Mutagenesis 20, 81-92. doi:10.1093/mutage/gei017

Trott, O. and Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455-461. doi:10.1002/jcc.21334

Vertrees, R. A., Jordan, J. M., Solley, T. et al. (2009). Tissue culture models. In T. C. Allen and P. T. Cagle (eds), Basic Concepts of Molecular Pathology (159-82). Boston, MA, USA: Springer US. doi:10.1007/978-0-387-89626-7_18

Vinken, M., Benfenati, E., Busquet, F. et al. (2021). Safer chemicals using less animals: Kick-off of the European ONTOX project. Toxicology 458, 152846. doi:10.1016/j.tox.2021.152846

Weindling, P. (1985). The Social History of Occupational Health. Croom Helm.

Williams, G. M., Aardema, M., Acquavella, J. et al. (2016). A review of the carcinogenic potential of glyphosate by four independent expert panels and comparison to the IARC assessment. Crit Rev Toxicol 46, 3-20. doi:10.1080/10408444.2016.1214677

Most read articles by the same author(s)

<< < 3 4 5 6 7 8 9 10 11 12 > >>