Exploring the synergy of CRISPR and microphysiological systems

Main Article Content

Emanuele Celauro, Amer Saleh, Prathap Kumar Mahalingaiah, Lisa Mohamet, Rhiannon David, Roberto Nitsch
[show affiliations]

Abstract

Since its discovery as an innate bacterial immune system, the Clustered regularly interspaced short palindromic repeats (CRISPR) associated nuclease 9 (CRISPR-Cas9) system has quickly landed on mammalian genomes to become the first-in-class editing technique. CRISPR-Cas9 offered an invaluable approach to correct pathogenic mutations, thus becoming a promising cure for diseases with highly unmet medical needs. To date, several attempts with different degrees of success were done to understand, categorize and predict the outcome of genetic manipulation. The lack of an appropriate and translatable model to test CRISPR/Cas9 effects, both wanted and unwanted, has therefore limited its applications to advance gene therapies. Herein we describe the potential of microphysiological systems (MPS) as an alternative to the classical surrogates used in CRISPR safety studies, such as immortalized cell lines or small mammals (e.g. rodents), to facilitate the progress of new CRISPR medicines to the clinics.


Plain language summary
CRISPR-Cas9 gene editing technology offers promising potential for treating genetic diseases by correcting mutations. However, its safe application faces challenges due to limitations in testing models. Traditional laboratory methods using immortalized cells or animal studies often fail to accurately reflect human responses. Microphysiological systems (MPS), also known as "organs-on-chips," represent an innovative alternative that can better mimic human tissue structure and function. This review explores how combining CRISPR technology with MPS can enhance both fields: MPS provides more relevant testing platforms for CRISPR therapies, while CRISPR enables creation of disease models in MPS. This synergy could lead to safer, more effective gene therapies and reduce the need for animal testing. By offering more accurate prediction of human responses, this approach addresses current limitations in translating laboratory findings to clinical applications, ultimately benefiting patients with genetic disorders.

Article Details

How to Cite
Celauro, E. (2025) “Exploring the synergy of CRISPR and microphysiological systems”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2403251.
Section
Articles
References

Afzal, S., Sirohi, P., & Singh, N. K. (2020). A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement. Biotechnol Lett 42, 1611-1632. doi:10.1007/s10529-020-02950-w

Ahmadi, F., Quach, A. B. V. and Shih, S. C. C. (2020). Is microfluidics the "assembly line" for CRISPR-Cas9 gene-editing? Biomicrofluidics 14, 061301. doi:10.1063/5.0029846

Artegiani, B., Hendriks, D., Beumer, J. et al. (2020). Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol 22, 321-331. doi:10.1038/s41556-020-0472-5

Bai, B., Myklebust, J. H. and Walchli, S. (2020). Gene editing in B-lymphoma cell lines using CRISPR/Cas9 technology. Methods Mol Biol 2115, 445-454. doi:10.1007/978-1-0716-0290-4_25

Bale, S. S. and Borenstein, J. T. (2018). Microfluidic cell culture platforms to capture hepatic physiology and complex cellular interactions. Drug Metab Dispos 46, 1638-1646. doi:10.1124/dmd.118.083055

Bulcha, J. T., Wang, Y., Ma, H. et al. (2021). Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 6, 53. doi:10.1038/s41392-021-00487-6

Chen, B., Li, Y., Xu, F. and Yang, X. (2022). Powerful CRISPR-based biosensing techniques and their integration with microfluidic platforms. Front Bioeng Biotechnol 2 10, 851712. doi:10.3389/fbioe.2022.851712

Contessi Negrini, N., Angelova Volponi, A., Higgins, C. A. et al. (2021). Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Materials Today Bio 10, 100107. doi:10.1016/j.mtbio.2021.100107

Corrado, A., Aceto, R., Miglietta, S. et al. (2024). Strategies for single base gene editing in an immortalized human cell line by CRISPR/Cas9 technology. 3 Biotech 14, 45. doi:10.1007/s13205-023-03878-4

DiTommaso, T., Cole, J. M., Cassereau, L. et al. (2018). Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. Proc Natl Acad Sci USA 115, E10907. doi:10.1073/pnas.1809671115

Dong, Z., Jiao, Y., Xie, B. et al. (2020). On-chip multiplexed single-cell patterning and controllable intracellular delivery. Microsys Nanoeng 6, 2. doi:10.1038/s41378-019-0112-z

Ewart, L., Dehne, E.-M., Fabre, K. et al. (2018). Application of microphysiological systems to enhance safety assessment in drug discovery. Annu Rev Pharmacol Toxicol 58, 65-82. doi:10.1146/annurev-pharmtox-010617-052722

Fischer, K. F., Schnieke, A. (2023). How genome editing changed the world of large animal research. Front Genome Ed 5, 1272687. doi:10.3389/fgeed.2023.1272687

Forbes, T. A., Howden, S. E., Lawlor, K. et al. (2018). Patient-iPSC-derived kidney organoids show functional validation of a ciliopathic renal phenotype and reveal underlying pathogenetic mechanisms. Am J Hum Genet 102, 816-831. doi:10.1016/j.ajhg.2018.03.014

Freedman, B. S., Brooks, C. R., Lam, A. Q. et al. (2015). Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6, 8715. doi:10.1038/ncomms9715

Fu, Y., Foden, J. A., Khayter, C. et al. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826. doi:10.1038/nbt.2623

Geurts, M. H., de Poel, E., Amatngalim, G. D. et al. (2020). CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell 26, 503-510.e507. doi:10.1016/j.stem.2020.01.019

Gopal, S., Rodrigues, A. L. and Dordick, J. S. (2020). Exploiting CRISPR Cas9 in three-dimensional stem cell cultures to model disease. Front Bioeng Biotechnol 8, 692. doi:10.3389/fbioe.2020.00692

Gough, V. and Gersbach, C. A. (2020). Immunity to Cas9 as an obstacle to persistent genome editing. Mol Ther 28, 1389-1391. doi:10.1016/j.ymthe.2020.05.007

Han, H. A., Pang, J. K. S. and Soh, B.-S. (2020). Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med 98, 615-632. doi:10.1007/s00109-020-01893-z

Han, X., Liu, Z., Jo, M. C. et al. (2015). CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv 1, e1500454. doi:10.1126/sciadv.1500454

Holloway, P. M., Willaime-Morawek, S., Siow, R. et al. (2021). Advances in microfluidic in vitro systems for neurological disease modeling. J Neurosci Res 99, 1276-1307. doi:10.1002/jnr.24794

Horvath, P. and Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167-170. doi:10.1126/science.1179555

Hsu, P. D., Lander, E. S. and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278. doi:10.1016/j.cell.2014.05.010

Huebsch, N., Loskill, P., Deveshwar, N. et al. (2016). Miniaturized iPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci Rep 6, 24726. doi:10.1038/srep24726

Jacinto, F. V., Link, W. and Ferreira, B. I. (2020). CRISPR/Cas9‐mediated genome editing: From basic research to translational medicine. J Cell Mol Med 24, 3766-3778. doi:10.1111/jcmm.14916

Jandova, J., Perer, J., Hua, A. et al. (2020). Genetic target modulation employing CRISPR/Cas9 identifies glyoxalase 1 as a novel molecular determinant of invasion and metastasis in A375 human malignant melanoma cells in vitro and in vivo. Cancers 12, 1369 doi:10.3390/cancers12061369

Kim, H., Park, H. J., Choi, H. et al. (2019). Modeling G2019S-LRRK2 sporadic Parkinson's disease in 3D midbrain organoids. Stem Cell Reports 12, 518-531. doi:10.1016/j.stemcr.2019.01.020

Konry, T., Dominguez-Villar, M., Baecher-Allan, C. et al. (2011). Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens Bioelectron 26, 2707-2710. doi:10.1016/j.bios.2010.09.006

Kopec, A. K., Yokokawa, R., Khan, N. et al. (2021). Microphysiological systems in early stage drug development: Perspectives on current applications and future impact. J Toxicol Sci 46, 99-114. doi:10.2131/jts.46.99

Kostrzewski, T., Maraver, P., Ouro‐Gnao, L. et al. (2020). A microphysiological system for studying nonalcoholic steatohepatitis. Hepatol Commun 4, 77-91. doi:10.1002/hep4.1450

Kowalski, P. S., Rudra, A., Miao, L. and Anderson, D. G. (2019). Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol Ther 27, 710-728. doi:10.1016/j.ymthe.2019.02.012

Kuhn, J., Lin, Y., Krhac Levacic, A. et al. (2020). Delivery of Cas9/sgRNA ribonucleoprotein complexes via hydroxystearyl oligoamino amides. Bioconjug Chem 31, 729-742. doi:10.1021/acs.bioconjchem.9b00853

Laperrousaz, B., Porte, S., Gerbaud, S. et al. (2018). Direct transfection of clonal organoids in matrigel microbeads: A promising approach toward organoid-based genetic screens. Nucleic Acids Res 46, e70. doi:10.1093/nar/gky030

Li, L., Hu, S. and Chen, X. (2018). Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 171, 207-218. doi:10.1016/j.biomaterials.2018.04.031

Li, Y., Muffat, J., Omer, A. et al. (2017). Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20, 385-396.e383. doi:10.1016/j.stem.2016.11.017

Lim, K. R. Q., Nguyen, Q., Dzierlega, K. et al. (2020). CRISPR-generated animal models of duchenne muscular dystrophy. Genes 11, 342. doi:10.3390/genes11030342

Lin, Y.-T., Seo, J., Gao, F. et al. (2018). ApoE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141-1154.e1147. doi:10.1016/j.neuron.2018.05.008

Ma, C., Fan, R., Ahmad, H. et al. (2011). A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17, 738-743. doi:10.1038/nm.2375

Maass, C., Sorensen, N. B., Himmelfarb, J. et al. (2019). Translational assessment of drug‐induced proximal tubule injury using a kidney microphysiological system. CPT: Pharmacometrics Syst Pharmacol 8, 316-325. doi:10.1002/psp4.12400

Matano, M., Date, S., Shimokawa, M. et al. (2015). Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21, 256-262. doi:10.1038/nm.3802

Mehta, A. and Merkel, O. M. (2020). Immunogenicity of Cas9 protein. J Pharm Sci 109, 62-67. doi:10.1016/j.xphs.2019.10.003

Mout, R., Ray, M., Yesilbag Tonga, G. et al. (2017). Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11, 2452-2458. doi:10.1021/acsnano.6b07600

Naeem, M., Majeed, S., Hoque, M. Z. and Ahmad, I. (2020). Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 9, 1608. doi:10.3390/cells9071608

Nie, J. and Hashino, E. (2017). Organoid technologies meet genome engineering. EMBO Rep 18, 367-376. doi:10.15252/embr.201643732

Osborn, M. J., Lees, C. J., McElroy, A. N. et al. (2018). CRISPR/Cas9-based cellular engineering for targeted gene overexpression. Int J Mol Sci 19, 946. doi:10.3390/ijms19040946

Paredes-Redondo, A., Harley, P., Maniati, E. et al. (2021). Optogenetic modeling of human neuromuscular circuits in Duchenne muscular dystrophy with CRISPR and pharmacological corrections. Sci Adv 7, eabi8787. doi:10.1126/sciadv.abi8787

Peel, S. and Jackman, M. (2021). Imaging microphysiological systems: A review. 320, C669-C680. doi:10.1152/ajpcell.00186.2020

Peleg-Chen, D., Shuvali, G., Brio, L. et al. (2022). Microfluidic tool for rapid functional characterization of CRISPR complexes. New Biotechnol 68, 1-8. doi:10.1016/j.nbt.2022.01.003

Peterson, N. C., Mahalingaiah, P. K., Fullerton, A. and Di Piazza, M. (2020). Application of microphysiological systems in biopharmaceutical research and development. Lab on a Chip 20, 697-708. doi:10.1039/c9lc00962k

Romano, E., Trionfini, P., Ciampi, O. et al. (2020). Generation of PKD1 mono-allelic and bi-allelic knockout iPS cell lines using CRISPR-Cas9 system. Stem Cell Research 47, 101881. doi:10.1016/j.scr.2020.101881

Rudmann, D. G. (2019). The emergence of microphysiological systems (organs-on-chips) as paradigm-changing tools for toxicologic pathology. Toxicol pathol 47, 4–10. doi:10.1177/0192623318809065

Scarritt, M. E., Pashos, N. C. and Bunnell, B. A. (2015). A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol 3, 43. doi:10.3389/fbioe.2015.00043

Schwank, G., Koo, B. K., Sasselli, V. et al. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653-658. doi:10.1016/j.stem.2013.11.002

Sharei, A., Zoldan, J., Adamo, A. et al. (2013). A vector-free microfluidic platform for intracellular delivery. Proc Natl Acad Sci U S A 110, 2082-2087. doi:10.1073/pnas.1218705110

Tan, K., Keegan, P., Rogers, M. et al. (2019). A high-throughput microfluidic microphysiological system (predict-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions. Lab on a Chip 19, 1556-1566. doi:10.1039/C8LC01262H

Teichmann, J., Valtink, M., Nitschke, M. et al. (2013). Tissue engineering of the corneal endothelium: A review of carrier materials. J Funct Biomater 4, 178-208. doi:10.3390/jfb4040178

Truskey, G. A. (2018). Human microphysiological systems and organoids as in vitro models for toxicological studies. Front Public Health 6, 185. doi:10.3389/fpubh.2018.00185

van der Helm, M. W., van der Meer, A. D., Eijkel, J. C. et al. (2016). Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 4, e1142493. doi:10.1080/21688370.2016.1142493

van Meer, B. J., de Vries, H., Firth, K. S. A. et al. (2017). Small molecule absorption by pdms in the context of drug response bioassays. Biochem Biophys Res Comm 482, 323-328. doi:10.1016/j.bbrc.2016.11.062

Vanaei, S., Parizi, M. S., Vanaei, S. et al. (2021). An overview on materials and techniques in 3d bioprinting toward biomedical application. Engineered Regeneration 2, 1-18. doi:10.1016/j.engreg.2020.12.001

Vernetti, L. A., Senutovitch, N., Boltz, R. et al. (2016). A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med 241, 101-114. doi:10.1177/1535370215592121

Virumbrales-Muñoz, M. and Ayuso, J. M. (2022). From microfluidics to microphysiological systems: Past, present, and future. Organs-on-a-Chip 4, 100015. doi:10.1016/j.ooc.2022.100015

Wang, Y. I., Abaci, H. E. and Shuler, M. L. (2017). Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng 114, 184-194. doi:10.1002/bit.26045

Watson, D. E., Hunziker, R. and Wikswo, J. P. (2017). Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med 242, 1559-1572. doi:10.1177/1535370217732765

Wei, T., Cheng, Q., Min, Y.-L. et al. (2020). Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun 11, 3232. doi:10.1038/s41467-020-17029-3

Welch, N. L., Zhu, M., Hua, C. et al. (2022). Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nat Med 28, 1083-1094. doi:10.1038/s41591-022-01734-1

Winkelman, M. A., Kim, D. Y., Kakarla, S. et al. (2022). Interstitial flow enhances the formation, connectivity, and function of 3D brain microvascular networks generated within a microfluidic device. Lab on a Chip 22, 170-192. doi:10.1039/D1LC00605C

Yen, J., Fiorino, M., Liu, Y. et al. (2018). TRIAMF: A new method for delivery of Cas9 ribonucleoprotein complex to human hematopoietic stem cells. Sci Rep 8, 16304. doi:10.1038/s41598-018-34601-6

Zhang, X., Bishawi, M., Zhang, G. et al. (2020). Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nat Commun 11, 5426. doi:10.1038/s41467-020-19197-8

Zhou, M., Zhang, X., Wen, X. et al. (2016). Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy. Sci Rep 6, 31771. doi:10.1038/srep31771

Most read articles by the same author(s)