Considerations from the pharmaceutical industry (IQ MPS affiliate) workshop on animal microphysiological systems and 3Rs in drug development

Main Article Content

Patrick J. Devine , Manti Guha, Jason E. Ekert, Anna K. Kopec, James R. Gosset, May S. Freag, Matthew P. Wagoner, Philip Hewitt, Kate Harris, Myriam Lemmens, Nakissa Sadrieh, Donna Mendrick, David M. Stresser, Leslie Valencia, Paul C. Brown, Ronald L. Wange, Amy Avila, Kevin Ford, Robert Geiger, Martha Garcia, Jessica A. Bonzo, John P. Gleeson, Christine C. Orozco, Qun Li, Chris Hinckley, Reiner Class, Josephine M. McAuliffe, Amy Tran-Guzman, Francesco Nevelli, Gonçalo Gamboa da Costa, Dayton Petibone, Tomomi Kiyota, Qiang Shi, Rhiannon N. Hardwick
[show affiliations]

Abstract

Most complex in vitro models (CIVM) and microphysiological systems (MPS) are composed of human cells, with the goal of evaluating diseases, efficacy, safety, and pharmacokinetic questions specifically for humans. The hope with CIVM/MPS is that they will eventually improve our predictivity for clinical responses and reduce or replace animal use in research, supporting the 3Rs concept of only using animals in research when necessary. Given the potential of animal-based models to advance this field by comparing existing in vivo animal data with new animal-based MPS responses, there are currently few CIVM and MPS utilizing animal tissues. Animal-based MPS may also have specific utility for cross-species comparisons or species-specific mechanistic questions on zoonotic diseases, and therapies for animals. Animal-based MPS may help expand in vitro-to in vivo correlations, advance the field and establish confidence in the predictive nature of such platforms. The IQ MPS-FDA workshop provided an interactive venue for pharmaceutical companies and regulatory agencies such as the U.S. Food and Drug Administration (FDA), NC3Rs (UK), Health Canada, NIH/NCATS, NIHS and PMDA (Japan), Danish Medicines Agency, European Commission, NIEHS/ICEATM, HHS, NIST, EURL ECVAM, and the IQ MPS Affiliate, a collaboration of pharmaceutical companies to jointly discuss considerations of animal-based MPS and applications where animal-based MPS are of potential value.


Plain language summary
Microphysiological systems are complex in vitro models that recapitulate human or animal physiology by mimicking their key biological processes and disease states. These models need extensive validation to be utilized routinely as drug discovery tools. The IQ MPS Affiliate comprised of 26 pharmaceutical companies held a joint workshop with the FDA, other regulators and the NC3Rs to address current challenges in the MPS field and discuss context of use for animal-cell based MPS in drug discovery.

Article Details

How to Cite
Devine, P. (2025) “Considerations from the pharmaceutical industry (IQ MPS affiliate) workshop on animal microphysiological systems and 3Rs in drug development”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2503261.
Section
Workshop Reports
References

Allen, F., Crepaldi, L., Alsinet, C. et al. (2018). Predicting the mutations generated by repair of cas9-induced double-strand breaks. Nat Biotechnol 10.1038/nbt.4317. doi:10.1038/nbt.4317

US Congress (2023). Consolidated appropriations act. (Public Law 117-328), https://www.congress.gov/117/plaws/publ328/PLAW-117publ328.pdf

Ashammakhi, N., Wesseling-Perry, K., Hasan, A. et al. (2018). Kidney-on-a-chip: Untapped opportunities. Kidney international 94, 1073-1086. doi:10.1016/j.kint.2018.06.034

Avila, A. M., Bebenek, I., Bonzo, J. A. et al. (2020). An FDA/CDER perspective on nonclinical testing strategies: Classical toxicology approaches and new approach methodologies (NAMs). Regul Toxicol Pharmacol 114, 104662. doi:10.1016/j.yrtph.2020.104662

Avila, A. M., Bebenek, I., Mendrick, D. L. et al. (2023). Gaps and challenges in nonclinical assessments of pharmaceuticals: An fda/cder perspective on considerations for development of new approach methodologies. Regul Toxicol Pharmacol 139, 105345. doi:10.1016/j.yrtph.2023.105345

Bajaj, P., Chowdhury, S. K., Yucha, R. et al. (2018). Emerging kidney models to investigate metabolism, transport, and toxicity of drugs and xenobiotics. Drug Metab Dispos 46, 1692-1702. doi:10.1124/dmd.118.082958

Baker, T. K., Van Vleet, T. R., Mahalingaiah, P. K. et al. (2024). The current status and use of microphysiological systems by the pharmaceutical industry: The international consortium for innovation and quality microphysiological systems affiliate survey and commentary. Drug Metab Dispos 52, 198-209. doi:10.1124/dmd.123.001510

Bothmer, A., Gareau, K. W., Abdulkerim, H. S. et al. (2020). Detection and modulation of DNA translocations during multi-gene genome editing in t cells. CRISPR J 3, 177-187. doi:10.1089/crispr.2019.0074

Brown, P. C., Hooberman, B. H., Skinner, B. L. et al. (2024). Potential value of animal microphysiological systems. ALTEX, Epub ahead of print. doi:10.14573/altex.2311141

Cao, X., Li, Y., Luo, R. Z. et al. (2012). Tyrosine-protein phosphatase nonreceptor type 12 is a novel prognostic biomarker for esophageal squamous cell carcinoma. Ann Thorac Surg 93, 1674-1680. doi:10.1016/j.athoracsur.2011.12.056

Chen, W.-Y., Evangelista, E. A., Yang, J. et al. (2021). Kidney organoid and microphysiological kidney chip models to accelerate drug development and reduce animal testing. Frontiers in Pharmacology 12, 695920. doi:10.3389/fphar.2021.695920

Cong, L., Ran, F. A., Cox, D. et al. (2013). Multiplex genome engineering using crispr/cas systems. Science 339, 819-823. doi:10.1126/science.1231143

Devine, P. J., Ekert, J., Kopec, A. K. et al. (in revision). Pharmaceutical industry perspective on the need utility for of animal cell-based microphysiological systems to support human drug development.

Diamond, M. S., Ledgerwood, J. E. and Pierson, T. C. (2019). Zika virus vaccine development: Progress in the face of new challenges. Ann Rev Med 70, 121-135. doi:10.1146/annurev-med-040717-051127

EMA – European Medicines Agency (2021). Quality, non-clinical and clinical aspects of medicinal products containing genetically modified cells - Scientific guideline. https://www.ema.europa.eu/en/quality-non-clinical-clinical-aspects-medicinal-products-containing-genetically-modified-cells-scientific-guideline

Frangoul, H., Altshuler, D., Cappellini, M. D. et al. (2020). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 384, 252-260. doi:10.1056/NEJMoa2031054

Guadamillas, M. C., Cerezo, A. and Del Pozo, M. A. (2011). Overcoming anoikis--pathways to anchorage-independent growth in cancer. J Cell Sci 124, 3189-3197. doi:10.1242/jcs.072165

Guo, J., Guan, Q., Liu, X. et al. (2016). Relationship of clusterin with renal inflammation and fibrosis after the recovery phase of ischemia-reperfusion injury. BMC Nephrol 17, 133. doi:10.1186/s12882-016-0348-x

Hirsch, A. J., Smith, J. L., Haese, N. N. et al. (2017). Zika virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog 13, e1006219. doi:10.1371/journal.ppat.1006219

Honein, M. A., Dawson, A. L., Petersen, E. E. et al. (2017). Birth defects among fetuses and infants of us women with evidence of possible zika virus infection during pregnancy. JAMA 317, 59-68. doi:10.1001/jama.2016.19006

Hsu, P. D., Scott, D. A., Weinstein, J. A. et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832. doi:10.1038/nbt.2647

Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. doi:10.1126/science.1225829

Kodama, T., Newberg, J. Y., Kodama, M. et al. (2016). Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma. Proc Natl Acad Sci U S A 113, E3384-3393. doi:10.1073/pnas.1606876113

Kosicki, M., Tomberg, K. and Bradley, A. (2018). Repair of double-strand breaks induced by crispr–cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36, 765-771. doi:10.1038/nbt.4192

Kusakawa, S., Yasuda, S., Kuroda, T. et al. (2015). Ultra-sensitive detection of tumorigenic cellular impurities in human cell-processed therapeutic products by digital analysis of soft agar colony formation. Sci Rep 5, 17892. doi:10.1038/srep17892

Leibowitz, M. L., Papathanasiou, S., Doerfler, P. A. et al. (2021). Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat Genet 53, 895-905. doi:10.1038/s41588-021-00838-7

Lemmens, M., Fischer, B., Zogg, M. et al. (2021). Evaluation of two in vitro assays for tumorigenicity assessment of CRISPR-Cas9 genome-edited cells. Mol Ther Methods Clin Dev 23, 241-253. doi:10.1016/j.omtm.2021.09.004

Lloyd, S., Hayden, M. J., Sakai, Y. et al. (2002). Differential in vitro hepatotoxicity of troglitazone and rosiglitazone among cryopreserved human hepatocytes from 37 donors. Chem Biol Interact 142, 57-71. doi:10.1016/s0009-2797(02)00054-6

Loewa, A., Feng, J. J. and Hedtrich, S. (2023). Human disease models in drug development. Nat Rev Bioeng 1-15. doi:10.1038/s44222-023-00063-3

Maeder, M. L., Stefanidakis, M., Wilson, C. J. et al. (2019). Development of a gene-editing approach to restore vision loss in leber congenital amaurosis type 10. Nat Med 25, 229-233. doi:10.1038/s41591-018-0327-9

Magalhaes, T., Foy, B. D., Marques, E. T. et al. (2018). Mosquito-borne and sexual transmission of zika virus: Recent developments and future directions. Virus Res 254, 1-9. doi:10.1016/j.virusres.2017.07.011

Mead, P. S., Hills, S. L. and Brooks, J. T. (2018). Zika virus as a sexually transmitted pathogen. Curr Opin Infect Dis 31, 39-44. doi:10.1097/QCO.0000000000000414

Miller, M. R., Fagre, A. C., Clarkson, T. C. et al. (2021). Three immunocompetent small animal models that do not support zika virus infection. Pathogens 10, 971. doi:10.3390/pathogens10080971

Morrison, T. E. and Diamond, M. S. (2017). Animal models of zika virus infection, pathogenesis, and immunity. J Virol 91, e00009-17. doi:10.1128/JVI.00009-17

Naeem, M., Majeed, S., Hoque, M. Z. et al. (2020). Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 9, 1608. doi:10.3390/cells9071608

NASEM – National Academies of Sciences Engineering and Medicine (2021). Microphysiological systems: Bridging human and animal research: Proceedings of a workshop. National Academies of Sciences, Engineering, and Medicine doi:10.17226/26124

Newman, C. M., Tarantal, A. F., Martinez, M. L. et al. (2021). Early embryonic loss following intravaginal zika virus challenge in rhesus macaques. Front Immunol 12, 686437. doi:10.3389/fimmu.2021.686437

OECD (2017), Overview of the set of OECD Genetic Toxicology Test Guidelines and updates performed in 2014-2015 - Second edition, OECD Series on Testing and Assessment, No. 238, OECD Publishing, Paris, doi:10.1787/61eca5cd-en

Parums, D. V. (2024). Editorial: First regulatory approvals for crispr-cas9 therapeutic gene editing for sickle cell disease and transfusion-dependent beta-thalassemia. Med Sci Monit 30, e944204. doi:10.12659/MSM.944204

PMDA – Pharmaceuticals and Medical Devices Agency (2020). White-paper for quality and safety for gene therapy products using gene editing technology. https://www.pmda.go.jp/files/000237636.pdf

Piao, Y., Liu, X., Lin, Z. et al. (2015). Decreased expression of protein tyrosine phosphatase non-receptor type 12 is involved in the proliferation and recurrence of bladder transitional cell carcinoma. Oncol Lett 10, 1620-1626. doi:10.3892/ol.2015.3454

Proctor, W. R., Foster, A. J., Vogt, J. et al. (2017). Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Arch Toxicol 91, 2849-2863. doi:10.1007/s00204-017-2002-1

Rasmussen, S. A., Jamieson, D. J., Honein, M. A. et al. (2016). Zika virus and birth defects—reviewing the evidence for causality. N Engl J Med 374, 1981-1987. doi:10.1056/NEJMsr1604338

Rodríguez-Rivera, C., Garcia, M. M., Molina-Álvarez, M. et al. (2021). Clusterin: Always protecting. Synthesis, function and potential issues. Biomed Pharmacother 134, 111174. doi:10.1016/j.biopha.2020.111174

Rotem, A., Janzer, A., Izar, B. et al. (2015). Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation. Proc Natl Acad Sci 112, 5708-5713. doi:doi:10.1073/pnas.1505979112

Samuelson, C., Radtke, S., Zhu, H. et al. (2021). Multiplex crispr/cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations. Mol Ther Methods Clin Dev 23, 507-523. doi:10.1016/j.omtm.2021.10.008

Sato, Y., Bando, H., Di Piazza, M. et al. (2019). Tumorigenicity assessment of cell therapy products: The need for global consensus and points to consider. Cytotherapy 21, 1095-1111. doi:10.1016/j.jcyt.2019.10.001

Schoeps, B., Frädrich, J. and Krüger, A. (2023). Cut loose timp-1: An emerging cytokine in inflammation. Trends Cell Biol 33, 413-426. doi:10.1016/j.tcb.2022.08.005

Steger-Hartmann, T. and Raschke, M. (2020). Translating in vitro to in vivo and animal to human. Curr Opin Toxicol 23-24, 6-10. doi:10.1016/j.cotox.2020.02.003

Stresser, D. M., Kopec, A. K., Hewitt, P. et al. (2023). Towards in vitro models for reducing or replacing the use of animals in drug testing. Nat Biomed Eng 8, 930-935. doi:10.1038/s41551-023-01154-7

Sun, T., Aceto, N., Meerbrey, K. L. et al. (2011). Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the ptpn12 phosphatase. Cell 144, 703-718. doi:10.1016/j.cell.2011.02.003

Taylor, L. H., Latham, S. M. and Woolhouse, M. E. (2001). Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356, 983-989. doi:10.1098/rstb.2001.0888

Tomlinson, L., Ramsden, D., Leite, S. B. et al. (2023). Considerations from an international regulatory and pharmaceutical industry (iq mps affiliate) workshop on the standardization of complex in vitro models in drug development. Adv Biol (Weinh) e2300131. doi:10.1002/adbi.202300131

Turchiano, G., Andrieux, G., Klermund, J. et al. (2021). Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by cast-seq. Cell Stem Cell 28, 1136-1147 e1135. doi:10.1016/j.stem.2021.02.002

Turkez, H., Arslan, M. E. and Ozdemir, O. (2017). Genotoxicity testing: Progress and prospects for the next decade. Expert Opin Drug Metab Toxicol 13, 1089-1098. doi:10.1080/17425255.2017.1375097

US FDA – US Food and Drug Agency (2024). Human gene therapy products incorporating human genome editing. https://www.fda.gov/media/156894/download

Valencia, L. J., Tseng, M., Chu, M. L. et al. (2024). Zoledronic acid and ibandronate-induced nephrotoxicity in 2d and 3d proximal tubule cells derived from human and rat. Toxicol Sci 198, 86-100. doi:10.1093/toxsci/kfad123

Van Brantegem, P., Chatterjee, S., De Bruyn, T. et al. (2020). Drug-induced cholestasis assay in primary hepatocytes. MethodsX 7, 101080. doi:10.1016/j.mex.2020.101080

Van Rompay, K. K., Coffey, L. L., Kapoor, T. et al. (2020). A combination of two human monoclonal antibodies limits fetal damage by zika virus in macaques. Proc Natl Acad Sci USA 117, 7981-7989. doi:10.1073/pnas.2000414117

Yokose, U., Hachiya, A., Sriwiriyanont, P. et al. (2012). The endogenous protease inhibitor timp-1 mediates protection and recovery from cutaneous photodamage. J Invest Dermatol 132, 2800-2809. doi:10.1038/jid.2012.204

Zhang, H., Qin, C., An, C. et al. (2021). Application of the crispr/cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 20, 126. doi:10.1186/s12943-021-01431-6

Zhou, W., Guan, Q., Kwan, C. C. et al. (2010). Loss of clusterin expression worsens renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 298, F568-F578. doi:10.1152/ajprenal.00399.2009

Zischewski, J., Fischer, R. and Bortesi, L. (2017). Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35, 95-104. doi:10.1016/j.biotechadv.2016.12.003

Most read articles by the same author(s)

1 2 > >>