A path forward advancing microphysiological systems
Main Article Content
Abstract
Microphysiological systems (MPS), including organ-on-chip platforms and complex organoid models, represent a transformative approach to human-relevant in vitro modeling. These technologies bioengineer aspects of organ architecture and functionality, revolutionizing drug development, reducing animal testing, and enabling personalized medicine approaches. Despite significant advances, several critical challenges remain before their full potential can be realized. This article examines key obstacles facing MPS adoption and implementation while proposing actionable solutions to accelerate their development and acceptance. Major challenges include standardization issues across terminology and protocols, validation complexities requiring robust reference compounds and benchmarking standards, regulatory uncertainties regarding data requirements and qualification processes, and barriers to effective data sharing among stakeholders. The paper traces the field’s evolution through various international initiatives, particularly highlighting the Center for Alternatives to Animal Testing’s (CAAT) contributions, including the establishment of the International MPS Society and World Summits. Proposed solutions emphasize establishing global standards through international consortia, enhancing validation frameworks through specialized validation centers, fostering collaboration through pre-competitive consortia and standardized data formats, and advancing regulatory integration through detailed case studies and clear guidance documents. Future priorities focus on overcoming technical challenges in biological complexity, addressing engineering hurdles, standardizing technologies, improving data management, increasing economic accessibility, and integrating with other emerging technologies. The path forward requires coordinated, collaborative efforts across academia, industry, regulatory agencies, and technology suppliers to systematically address these interrelated challenges.
Plain language summary
Microphysiological systems (MPS) are advanced laboratory models that mimic human organs using engineered tissues and microfluidic technology. These “organs-on-chips” and 3D organoids allow scientists to study disease and test drugs without using animals. Despite their promise, MPS face several challenges that slow their widespread adoption. These include inconsistent standards, difficulties proving they work reliably, regulatory uncertainties, and limited data sharing between organizations. This paper identifies these obstacles and proposes practical solutions: creating international standards, establishing dedicated centers to validate MPS models, encouraging organizations to share data, and developing clear regulatory pathways. The authors highlight ongoing collaborative efforts, including international conferences and societies dedicated to advancing MPS technologies. With coordinated effort from scientists, companies, and regulators, MPS could transform drug development, reduce animal testing, and enable more personalized treatment approaches, ultimately improving human health while reducing research costs.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Adashi, E. Y., O’Mahony, D. P. and Cohen, I. G. (2023). The FDA Modernization Act 2.0: Drug testing in animals is rendered optional. Am J Med 136, 853-854. doi:10.1016/j.amjmed.2023.03.033
Ajalik, R. E., Alenchery, R. G., Cognetti, J. S. et al. (2022). Human organ-on-a-chip microphysiological systems to model musculoskeletal pathologies and accelerate therapeutic discovery. Front Bioeng Biotechnol 10, 846230. doi:10.3389/fbioe.2022.846230
Alépée, N., Bahinski, T., Daneshian, M. et al. (2014). State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology – A t4 report. ALTEX 31, 441-477. doi:10.14573/altex.1406111
Andersen, M., Betts, K., Dragan, Y. et al. (2014). Developing microphysiological systems for use as regulatory tools – Challenges and opportunities. ALTEX 31, 364-367. doi:10.14573/altex.1405151
Ashammakhi, N., Darabi, M. A., Çelebi-Saltik, B. et al. (2020). Microphysiological systems: Next generation systems for assessing toxicity and therapeutic effects of nanomaterials. Small Methods 4, 1900589. doi:10.1002/smtd.201900589
Avila, A. M., Bebenek, I., Mendrick, D. L. et al. (2023). Gaps and challenges in nonclinical assessments of pharmaceuticals: An FDA/CDER perspective on considerations for development of new approach methodologies. Regul Toxicol Pharmacol 139, 105345. doi:10.1016/j.yrtph.2023.105345
Baker, T. K., Van Vleet, T. R., Mahalingaiah, P. K. et al. (2024). The current status and use of microphysiological systems by the pharmaceutical industry: The International Consortium for Innovation and Quality Microphysiological Systems Affiliate Survey and Commentary. Drug Metab Dispos 52, 198-209. doi:10.1124/dmd.123.001510
Balls, M., Bass, R., Curren, R. et al. (2024). 60 Years of the 3Rs symposium: Lessons learned and the road ahead. ALTEX 41, 179-201. doi:10.14573/altex.2403061
Baran, S. W., Brown, P. C., Baudy, A. R. et al. (2022). Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS affiliate). ALTEX 39, 297-314. doi:10.14573/altex.2112203
Barreras, P., Pamies, D., Hartung, T. et al. (2023). Human brain microphysiological systems in the study of neuroinfectious disorders. Exp Neurol 365, 114409. doi:10.1016/j.expneurol.2023.114409
Beilmann, M., Boonen, H., Czich, A. et al. (2019). Optimizing drug discovery by investigative toxicology: Current and future trends. ALTEX 36, 3-17. doi:10.14573/altex.1808181
Benam, K. H., Villenave, R., Lucchesi, C. et al. (2016). Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13, 151-157. doi:10.1038/nmeth.3697
Benfenati, E., Berggren, E., Fritsche, E. et al. (2016). Special issue: Novel chemical hazard characterisation approaches. EFSA J 14, s0506. doi:10.2903/j.efsa.2016.s0506
Bhatia, S. N. and Ingber, D. E. (2014). Microfluidic organs-on-chips. Nat Biotechnol 32, 760-772. doi:10.1038/nbt.2989
Brown, P. C., Hooberman, B. H., Skinner, B. L. et al. (2025). Poten¬tial value of animal microphysiological systems. ALTEX, in press. doi:10.14573/altex.2311141
Celardo, I., Ashner, M., Ashton, R. S. et al. (2025). Developmental neurotoxicity (DNT): A call for implementation of new approach methodologies for regulatory purposes: Summary of the 5th international conference on DNT testing. ALTEX 42, 323-349. doi:10.14573/altex.2503191
Choi, S. H., Kim, Y. H., Hebisch, M. et al. (2014). A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515, 274-278. doi:10.1038/nature13800
Coecke, S., Balls, M., Bowe, G. et al. (2005). Guidance on good cell culture practice. A report of the second ECVAM task force on good cell culture practice. Altern Lab Anim 33, 261-287. doi:10.1177/026119290503300313
Cöllen, E., Bartmann, K., Blum, J. et al. (2025). Mapping out strategies to further develop human-relevant, new approach methodology (NAM)-based developmental neurotoxicity (DNT) testing. ALTEX 42, 308-322. doi:10.14573/altex.2501091
Devine, P. J., Guha, M., Ekert, J. E. et al. (2025). Considerations from the pharmaceutical industry (IQ MPS Affiliate) workshop on animal microphysiological systems and 3Rs in drug develop¬ment. ALTEX, in press. doi:10.14573/altex.2503261
Dornhof, J., Kieninger, J., Rupitsch, S. J. et al. (2025). Microsensor systems for cell metabolism – From 2D culture to organ-on-chip (2019-2024). Lab Chip 25, 1149-1168. doi:10.1039/d4lc00437j
Doryab, A., Tas, S., Bruneaux, M. et al. (2023). Biomimetic in vitro lung models: Current challenges and future perspectives. Adv Mater 35, 2204635. doi:10.1002/adma.202204635
Edington, C. D., Chen, W. L. K., Geishecker, E. et al. (2018). Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep 8, 4530. doi:10.1038/s41598-018-22749-0
Ekert, J. E., Deakyne, J., Pribul-Allen, P. et al. (2020). Recommended guidelines for developing, qualifying, and implementing complex in vitro models (CIVMs) for drug discovery. SLAS Discov 25, 1174-1190. doi:10.1177/2472555220923332
Ewart, L., Fabre, K., Chakilam, A. et al. (2017). Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective. Exp Biol Med 242, 1579-1585. doi:10.1177/1535370217703970
Ewart, L., Dehne, E. M., Fabre, K. M. et al. (2018). Application of microphysiological systems to enhance safety assessment in drug discovery. Annu Rev Pharmacol Toxicol 58, 65-82. doi:10.1146/annurev-pharmtox-010617-052722
Ewart, L., Apostolou, A., Briggs, S. A. et al. (2022). Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology. Comm Med 2, 154. doi:10.1038/s43856-022-00209-1
Fäs, L., Chen, M., Tong, W. et al. (2025). Physiological liver microtissue 384-well microplate system for preclinical hepatotoxicity assessment of therapeutic small molecule drugs. Toxicol Sci 203, 79-87. doi:10.1093/toxsci/kfae123
Franzen, N., van Harten, W. H., Retel, V. P. et al. (2019). Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discov Today 24, 1720-1724. doi:10.1016/j.drudis.2019.06.003
Gilbert, S., Drummond, D., Cotte, F. et al. (2025). Editorial: Digital twins in medicine – Transition from theoretical concept to tool used in everyday care. Front Digit Health 7, 1573727. doi:10.3389/fdgth.2025.1573727
Gilmour, N., Kern, P. S., Alépée, N. et al. (2020). Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul Toxicol Pharmacol 116, 104721. doi:10.1016/j.yrtph.2020.104721
Goyal, G., Narayanan, A., Goyal, P. et al. (2022). The integration of immunocompetence in microphysiological systems: A new frontier for disease modeling and drug development. Biotechnol Adv 53, 107824. doi:10.1016/j.biotechadv.2022.107824
Hargrove-Grimes, P., Low, L. A. and Tagle, D. A. (2022). Microphysiological systems: Stakeholder challenges to adoption in drug development. Cells Tissues Organs 211, 269-281. doi:10.1159/000517422
Harriot, A., Ward, C. W. and Kim, D. H. (2024). Microphysiological systems to advance human pathophysiology and translational medicine. J Appl Physiol 137, 1494-1501. doi:10.1152/japplphysiol.00087.2024
Hartung, T. and Wendel, A. (1991). Endotoxin-inducible cytotoxicity in liver cell cultures – I. Biochem Pharmacol 42, 1129-1135. doi:10.1016/0006-2952(91)90298-j
Hartung, T., Hermening, S., Sauer, A. et al. (1996). Freisetzung eines Botenstoffes der Entzündung (TNF-α) aus Lebermakrophagen in Perfusions-Zellkultur (The formation of a mediator of inflammation). ALTEX 13, 17-23. https://altex.org/index.php/altex/article/view/1647
Hartung, T., Stephens, M. and Hoffmann, S. (2013). Mechanistic validation. ALTEX 30, 119-130. doi:10.14573/altex.2013.2.119
Hartung, T. (2017). 4.08 – A comprehensive overview of the current status and application of predictive ADMET. In S. Chackalamannil, D. Rotella and S. E. Ward (eds), Experimental ADME and Toxicology, Comprehensive Medicinal Chemistry III (150-155). Elsevier. doi:10.1016/B978-0-12-409547-2.12378-9
Hartung, T. (2018). Rebooting the generally recognized as safe (GRAS) approach for food additive safety in the US. ALTEX 35, 3-25. doi:10.14573/altex.1712181
Hartung, T., de Vries, R., Hoffmann, S. et al. (2019). Toward good in vitro reporting standards. ALTEX 36, 3-17. doi:10.14573/altex.1812191
Hartung, T. (2023). A call for a Human Exposome Project. ALTEX 40, 4-33. doi:10.14573/altex.2301061
Hartung, T. (2024). The validation of regulatory test methods – Conceptual, ethical, and philosophical foundations. ALTEX 41, 525-544. doi:10.14573/altex.2409271
Hartung, T., King, N., Kleinstreuer, N. et al. (2024a). Leveraging biomarkers and translational medicine for preclinical safety – Lessons for advancing the validation of alternatives to animal testing. ALTEX 41, 545-566. doi:10.14573/altex.2410011
Hartung, T., Maertens, A. and Luechtefeld, T. (2024b). E-validation – Unleashing AI for validation. ALTEX 41, 567-587. doi:10.14573/altex.2409211
Hoffmann, S., Edler, L., Gardner, I. et al. (2008). Points of reference in validation – The report and recommendations of ECVAM Workshop. Altern Lab Anim 36, 343-352. doi:10.1177/026119290803600311
Hogberg, H. T., Bressler, J., Christian, K. M. et al. (2013). Toward a 3D model of human brain development for studying gene/environment interactions. Stem Cell Res Ther 4, Suppl 1, S4. doi:10.1186/scrt365
Hogberg, H. T., de Cássia da Silveira e Sá, R., Kleensang, A. et al. (2021). Organophosphorus flame retardants are developmental neurotoxicants in a rat primary BrainSphere in vitro model. Arch Toxicol 95, 207-228, doi:10.1007/s00204-020-02903-2
Homan, K. A., Kolesky, D. B., Skylar-Scott, M. A. et al. (2016). Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6, 34845. doi:10.1038/srep34845
Hughes, D., Kostrzewski, T. and Sceats, E. (2017). Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems. Exp Biol Med 242, 1593-1604. doi:10.1177/1535370217708976
Huh, D., Matthews, B. D., Mammoto, A. et al. (2010). Reconstituting organ-level lung functions on a chip. Science 328, 1662-1668. doi:10.1126/science.1188302
Ingber, D. E. (2022). Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet 23, 467-491. doi:10.1038/s41576-022-00457-7
Irrechukwu, O., Yeager, R., David, R. et al. (2023). Applications of microphysiological systems to disease models in the biopharmaceutical industry: Opportunities and challenges. ALTEX 40, 485-518. doi:10.14573/altex.2204071
Jennings, P., Koppelstaetter, C., Pfaller, W. et al. (2004). Assessment of a new cell culture perfusion apparatus for in vitro chronic toxicity testing. Part 2: Toxicological evaluation. ALTEX 21, 61-66. https://altex.org/index.php/altex/article/view/966
Karmaus, A. L., Bialk, H., Fitzpatrick, S. et al. (2020). State of the science on alternatives to animal testing and integration of testing strategies for food safety assessments: Workshop proceedings. Regul Toxicol Pharmacol 110, 104515. doi:10.1016/j.yrtph.2019.104515
Katsoulakis, E., Wang, Q., Wu, H. et al. (2024). Digital twins for health: A scoping review. NPJ Digit Med 7, 77. doi:10.1038/s41746-024-01073-0
Kim, H. J. and Ingber, D. E. (2013). Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 5, 1130-1140. doi:10.1039/c3ib40126j
Kopec, A., Yokokawa, R., Khan, N. et al. (2021a). Standardization challenges and opportunities in MPS. Biotechnol Adv 45, 107628. doi:10.1016/j.biotechadv.2021.107628
Kopec, A., Yokokawa, R., Khan, N. et al. (2021b). Microphysiological systems in early stage drug development: Perspectives on current applications and future impact. J Toxicol Sci 46, 99-114. doi:10.2131/jts.46.99
Koppelstaetter, C., Jennings, P., Ryan, M. P. et al. (2004). Assessment of a new cell culture perfusion apparatus for in vitro chronic toxicity testing. Part 1: Technical description. ALTEX 21, 51-60. https://altex.org/index.php/altex/article/view/965
Krebs, A., Waldmann, T., Wilks, M. F. et al. (2019). Template for the description of cell-based toxicological test methods to allow evaluation and regulatory use of the data. ALTEX 36, 682-699. doi:10.14573/altex.1909271
Lancaster, M. A. and Knoblich, J. A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 345, 1247125. doi:10.1126/science.1247125
Leist, M., Hasiwa, M., Daneshian, M. and et al. (2012). Validation and quality control of replacement alternatives – Current status and future challenges. Toxicol Res 1, 8. doi:10.1039/c2tx20011b
Leung, C. M., de Haan, P., Ronaldson-Bouchard, K. et al. (2022). A guide to the organ-on-a-chip. Nat Rev Methods Primers 2, 33. doi:10.1038/s43586-022-00118-6
Low, L. A., Tagle, D. A. and Ingber, D. E. (2021). Organs-on-chips: Progress, challenges, and future directions. Exp Biol Med 246, 1697-1701. doi:10.1177/1535370221999502
Marx, U., Andersson, T. B. and Bahinski, A. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing using animals. ALTEX 33, 272-321. doi:10.14573/altex.1603161
Marx, U., Akabane, T., Andersson, T. B. et al. (2020). Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX 37, 364-394. doi:10.14573/altex.2001241
Marx, U., Beken, S., Chen, Z. et al. (2025). Biology-inspired dynamic microphysiological system approaches to revolutionize basic research, healthcare and animal welfare. ALTEX 42, 204-223. doi:10.14573/altex.2410112
Maschmeyer, I., Lorenz, A., Ramme, A. et al. (2015). A microfluidic four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Toxicol Lett 238, Suppl 16, S176. doi:10.1016/j.toxlet.2015.08.512
Materne, E. M., Maschmeyer, I., Lorenz, A. K. et al. (2015). The multi-organ chip: An advanced platform for toxicity testing. Arch Toxicol 89, 1785-1804. doi:10.1007/s00204-015-1585-9
Meigs, L., Smirnova, L., Rovida, C. et al. (2018). Animal testing and its alternatives – the most important omics is economics. ALTEX 35, 275-305. doi:10.14573/altex.180704
Modafferi, S., Zhong, X., Kleensang, A. et al. (2021). Gene-environment interactions in developmental neurotoxicity: A case study of synergy between chlorpyrifos and CHD8 knockout in human BrainSpheres. Environ Health Perspect 129, 77001. doi:10.1289/ehp8580
Moon, H. R., Surianarayanan, N., Singh, T. et al. (2023). Microphysiological systems as reliable drug discovery and evaluation tools: Evolution from innovation to maturity. Biomicrofluidics 17, 061504. doi:10.1063/5.0179444
Morrison, A. I., Sjoerds, M. J., Vonk, L. A. et al. (2024). In vitro immunity: An overview of immunocompetent organ-on-chip models. Front Immunol 15, 1373186. doi:10.3389/fimmu.2024.1373186
Nguyen, V. V. T., Gkouzioti, V., Maass, C. et al. (2023). A systematic review of kidney-on-a-chip-based models to study human renal (patho-)physiology. Dis Model Mech 16, dmm050113. doi:10.1242/dmm.050113
Nikolaev, M., Mitrofanova, O., Broguiere, N. et al. (2020). Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574-578. doi:10.1038/s41586-020-2724-8
Novak, R., Ingram, M., Marquez, S. et al. (2020). Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat Biomed Eng 4, 407-420. doi:10.1038/s41551-019-0497-x
Pamies, D., Barreras, P., Block, K. et al. (2017a). A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX 34, 362-376. doi:10.14573/altex.1609122
Pamies, D., Bal-Price, A., Simeonov, A. et al. (2017b). Good cell culture practice for stem cells and stem-cell-derived models. ALTEX 34, 95-132. doi:10.14573/altex.1607121
Pamies, D., Bal-Price, A., Chesne, C. et al. (2018). Advanced good cell culture practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX 35, 353-378. doi:10.14573/altex.1710081
Pamies, D., Leist, M., Coecke, S. et al. (2020a). Good cell and tissue culture practice 2.0 (GCCP 2.0) – Draft for stakeholder discussion and call for action. ALTEX 37, 490-492. doi:10.14573/altex.2007091
Pamies, D., Zurich, M.-G. and Hartung, T. (2020b). Organotypic models to study human glioblastoma – Studying the beast in its ecosystem. iScience 23, 101633. doi:10.1016/j.isci.2020.101633
Pamies, D., Leist, M., Coecke, S. et al. (2022). Guidance document on good cell and tissue culture practice 2.0 (GCCP 2.0). ALTEX 39, 30-70. doi:10.14573/altex.2111011
Pamies, D., Ekert, J., Zurich, M.-G. et al. (2024). Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems (MPS) and for monitoring of their reproducibility. Stem cell reports, recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Reports 19, 604-617. doi:10.1016/j.stemcr.2024.03.009
Park, J., Wetzel, I., Marriott, I. et al. (2018). A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci 21, 941-951. doi:10.1038/s41593-018-0175-4
Passley Hargrove-Grimes, L., Low, D. and Tagle, D. (2021). Microphysiological systems: What it takes for community adoption. Exp Biol Med 246, 1435-1446. doi:10.1177/15353702211008872
Peel, S. and Jackman, M. (2020). Imaging microphysiological systems: A review. Am J Physiol Cell Physiol 320, C669-C680. doi:10.1152/ajpcell.00186.2020
Plummer, S., Wallace, S. and Ball, G. (2019). A human iPSC-derived 3D platform using primary brain cancer cells to study drug development and personalized medicine. Sci Rep 9, 1407. doi:10.1038/s41598-018-38130-0
Rahman, S. M., Krishna, A., Sullenberger, C. et al. (2025). Opportunities and challenges for human microphysiological systems in drug development. ALTEX 42, 224-256. doi:10.14573/altex.2409221
Ramadan, Q. and Ting, F. C. W. (2022). In vitro microphysiological immune systems to understand immune-inflammatory disorders. Adv Drug Deliv Rev 186, 114318. doi:10.1016/j.addr.2022.114318
Roth, A. and MPS-WS Berlin 2019 (2021). Human microphysiological systems for drug development. Science 373, 1304-1306. doi:10.1126/science.abc3734
Samantasinghar, A., Sunildutt, N., Ahmed, F. et al. (2025). Revolutionizing biomedical research: Unveiling the power of microphysiological systems with advanced assays, integrated sensor technologies, and real-time monitoring. ACS Omega 10, 9869-9889. doi:10.1021/acsomega.4c11227
Servais, B., Mahmoudi, N., Gautam, V. et al. (2024). Engineering brain-on-a-chip platforms. Nat Rev Bioeng 1, 558-573. doi:10.1038/s44160-024-00066-9
Si, L., Bai, H., Rodas, M. et al. (2020). Human organs-on-chips for virology. Nat Biomed Eng 4, 997-1008. doi:10.1038/s41551-020-00607-2
Sillé, F. C. M., Karakitsios, S., Kleensang, A. et al. (2020). The exposome – a new approach for risk assessment. ALTEX 37, 3-23. doi:10.14573/altex.2001051
Sillé, F. C. M., Busquet, F., Fitzpatrick, S. et al. (2024). The Implementation Moonshot Project for Alternative Chemical Testing (IMPACT) toward a Human Exposome Project. ALTEX 41, 344-362. doi:10.14573/altex.2407081
Smirnova, L., Hogberg, H. T., Leist, M. et al. (2014). Developmental neurotoxicity – Challenges in the 21st century and in vitro opportunities. ALTEX 31, 129-156. doi:10.14573/altex.1403271
Smirnova, L., Kleinstreuer, N., Corvi, R. et al. (2018). 3S – Systematic, systemic, and systems biology and toxicology. ALTEX 35, 139-162. doi:10.14573/altex.1804051
Smirnova, L., Caffo, B. S., Gracias, D. H. et al. (2023a). Organoid intelligence (OI): The new frontier in biocomputing and intelligence-in-a-dish. Front Sci 1, 1017235. doi:10.3389/fsci.2023.1017235
Smirnova, L., Morales Pantoja, I. E. and Hartung, T. (2023b). Organoid Intelligence (OI) – The ultimate functionality of a brain microphysiological system. ALTEX 40, 191-203. doi:10.14573/altex.2303261
Smirnova, L., Hogberg, H. T., Leist, M. et al. (2024). Revolutionizing developmental neurotoxicity testing – A journey from animal models to advanced in vitro systems. ALTEX 41, 152-178. doi:10.14573/altex.2403281
Smirnova, L. and Hartung, T. (2024). The promise and potential of brain organoids. Adv Healthc Mater 13, 2302745. doi:10.1002/adhm.202302745
Suciu, I., Pamies, D., Peruzzo, R. et al. (2023). GxE interactions as a basis for toxicological uncertainty. Arch Toxicol 97, 2035-2049. doi:10.1007/s00204-023-03500-9
Sutherland, M., Fabre, K. M. and Tagle, D. (2013). The national institutes of health microphysiological systems program focuses on a critical challenge in the drug discovery pipeline. Stem Cell Res Ther 4, Suppl 1, I1. doi:10.1186/scrt361
Truskey, G. A. (2018). Human microphysiological systems and organoids as in vitro models for toxicological studies. Front Public Health 6, 185. doi:10.3389/fpubh.2018.00185
Tsaioun, K., Blaauboer, B. J. and Hartung, T. (2016). Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. ALTEX 34, 343-358. doi:10.14573/altex.1707031
van Vliet, E., Stoppini, L., Balestrino, M. et al. (2007). Electrophysiological recording of re-aggregating brain cell cultures on multi-electrode arrays to detect acute neurotoxic effects. Neurotoxicology 28, 1136-1146. doi:10.1016/j.neuro.2007.06.004
van Vliet, E., Morath, S., Linge, J. et al. (2008). A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology 29, 1-12. doi:10.1016/j.neuro.2007.09.007
von Aulock, S., Busquet, F., Locke, P. et al. (2022). Engagement of scientists with the public and policymakers to promote alternative methods. ALTEX 39, 543-559. doi:10.14573/altex.2209261
Wang, Y. I., Carmona, C., Hickman, J. et al. (2018). Multiorgan microphysiological systems for drug development: Strategies, advances, and challenges. Adv Healthc Mater 7, 1701000. doi:10.1002/adhm.201701000
Wang, Y., Lee, S. H. and Park, J. (2023). Advances in microphysiological systems with immune-competent features: Implications for precision medicine. Adv Drug Deliv Rev 189, 114448. doi:10.1016/j.addr.2022.114448
Watson, D., Hunziker, R. and Wikswo, J. (2017). Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med 242, 1559-1572. doi:10.1177/1535370217732765
Wikswo, J. (2014). The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med 239, 1061-1072. doi:10.1177/1535370214542068
Zhang, B., Korolj, A., Lai, B. F. L. et al. (2018). Advances in organ-on-a-chip engineering. Nat Rev Mater 3, 257-278. doi:10.1038/s41578-018-0034-7
Zhang, C., Zhao, Z., Abdul Rahim, N. A. et al. (2009). Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9, 3185-3192. doi:10.1039/b910928h
Zhang, S., Xu, G., Wu, J. et al. (2023). Microphysiological constructs and systems: Biofabrication tactics, biomimetic evaluation approaches, and biomedical applications. Small Methods 8, e2300685. doi:10.1002/smtd.202300685
Zhao, Y., Rafat, M., Knoblich, J. A. et al. (2021). Engineering vascularized tissues using microfluidic techniques. Trends Biotechnol 39, 336-349. doi:10.1016/j.tibtech.2020.09.009