The ox-foot-model for investigating endoluminal thermal treatment modalities of varicosis vein diseases
Main Article Content
Abstract
The introduction of technical surgical innovations in clinical medicine is preceded by preclinical evaluation of prototypes. Surgical aspects such as energy dependent tissue response and tissue sealing to reduce bleeding are usually investigated in animal experiments. Extra-corporal organ models can provide the required experimental information without harming animals and thus reduce or even replace in vivo experiments. Here we describe the ex vivo ox-foot-model, which can be used for surgical investigations and for training purposes.
In the ox-foot-model the vein remains in its anatomical bed under reproducible experimental conditions, i.e., blood perfusion, blood pressure, and temperature. Innovative endoluminal surgical procedures using laser light and radio frequency for varicosis treatment were tested. Treatment parameters were investigated systematically in a large number of samples. A standardized preclinical testing procedure could be established and optimized on the basis of acute macroscopic and histological findings. Further, optical coherence tomography could be evaluated as a time-saving diagnostic tool. The ox-foot-model is suitable for training surgical techniques relevant for the treatment of varicosis veins.
It is a cost-effective alternative to conventional in vivo experiments, providing standardized experimental conditions and reproducible experimental results while respecting the Principles of Humane Experimental Techniques: Reduction, Refinement, and Replacement of animal experiments.
Article Details
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).