Lung tumor microphysiological system with 3D endothelium to evaluate modulators of T-cell migration
Main Article Content
Abstract
Lung cancer is a leading cause of death worldwide, with only a fraction of patients responding to immunotherapy. The correlation between increased T-cell infiltration and positive patient outcomes has motivated the search for therapeutics promoting T-cell infiltration. While transwell and spheroid platforms have been employed, these models lack flow and endothelial barriers, and cannot faithfully model T-cell adhesion, extravasation, and migration through 3D tissue. Presented here is a 3D chemotaxis assay, in a lung tumor-on-chip model with 3D endothelium (LToC-Endo), to address this need. The described assay consists of a HUVEC-derived vascular tubule cultured under rocking flow, through which T-cells are added; a collagenous stromal barrier, through which T-cells migrate; and a chemoattractant/tumor (HCC0827 or NCI-H520) compartment. Here, activated T-cells extravasate and migrate in response to gradients of rhCXCL11 and rhCXCL12. Adopting a T-cell activation protocol with a rest period enables proliferative burst prior to introducing T-cells into chips and enhances assay sensitivity. In addition, incorporating this rest recovers endothelial activation in response to rhCXCL12. As a final control, we show that blocking ICAM-1 interferes with T-cell adhesion and chemotaxis. This microphysiological system, which mimics in vivo stromal and vascular barriers, can be used to evaluate potentiation of immune chemotaxis into tumors while probing for vascular responses to potential therapeutics. Finally, we propose translational strategies by which this assay could be linked to preclinical and clinical models to support human dose prediction, personalized medicine, and the reduction, refinement, and replacement of animal models.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Akbarpour Ghazani, M., Nouri, Z., Saghafian, M. et al. (2020). Mathematical modeling reveals how the density of initial tumor and its distance to parent vessels alter the growth trend of vascular tumors. Microcirculation 27, e12584. doi:10.1111/micc.12584
Alsaid, H., Cheng, S. H., Bi, M. et al. (2023). Immuno-PET monitoring of CD8+ T cell infiltration post ICOS agonist antibody treatment alone and in combination with PD-1 blocking antibody using a 89Zr anti-CD8+ mouse minibody in EMT6 syngeneic tumor mouse. Mol Imaging Biol 25, 528-540. doi:10.1007/s11307-022-01781-7
Baran, S. W., Brown, P. C., Baudy, A. R. et al. (2022). Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS affiliate). ALTEX 39, 297-314. doi:10.14573/altex.2112203
Beckmann, N. and Ledermann, B. (2017). Noninvasive small rodent imaging: Significance for the 3R principles. In F. Kiessling, B. J. Pichler and P. Hauff (eds), Small Animal Imaging. Cham, Switzerland: Springer. doi:10.1007/978-3-319-42202-2
Booij, T. H., Price, L. S. and Danen, E. H. J. (2019). 3D cell-based assays for drug screens: Challenges in imaging, image analysis, and high-content analysis. SLAS Discov 24, 615-627. doi:10.1177/2472555219830087
Boyden, S. (1962). The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115, 453-466. doi:10.1084/jem.115.3.453
Bremnes, R. M., Dønnem, T., Al-Saad, S. et al. (2011). The role of tumor stroma in cancer progression and prognosis: Emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 6, 209-217. doi:10.1097/jto.0b013e3181f8a1bd
Chen, D. S. and Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity 39, 1-10. doi:10.1016/j.immuni.2013.07.012
de Haan, L, Suijker, J., van Roey, R. et al. (2021). A microfluidic 3D endothelium-on-a-chip model to study transendothelial migration of T cells in health and disease. Int J Mol Sci 22, 8234.doi:10.3390/ijms22158234
Dewhirst, M. W. and Secomb, T. W. (2017). Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer 17, 738-750. doi:10.1038/nrc.2017.93
Dey, N. (2019). Uneven illumination correction of digital images: A survey of the state-of-the-art. Optik 183, 483-495. doi:10.1016/j.ijleo.2019.02.118
Distler, J. H. W., Hirth, A., Kurowaska-Stolarska, M. et al. (2003). Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 47, 149-161.
Ehlers, H., Nicolas, A., Schavemaker, F. et al. (2023). Vascular inflammation on a chip: A scalable platform for trans-endothelial electrical resistance and immune cell migration. Front Immunol 14, 1-11. doi:10.3389/fimmu.2023.1118624
Hegde, P. S. and Chen, D. S. (2020). Top 10 challenges in cancer immunotherapy. Immunity 52, 17-35. doi:10.1016/j.immuni.2019.12.011
Herter, S., Morra, L., Schlenker, R. et al. (2017). A novel three-dimensional heterotypic spheroid model for the assessment of the activity of cancer immunotherapy agents. Cancer Immunol Immunother 66, 129-140. doi:10.1007/s00262-016-1927-1
Hunt, B. J. and Jurd, K. M. (1998). Endothelial cell activation. Br Med J 316, 1328-1329. doi:10.1136/bmj.316.7141.1328
Iversen, P. W., Eastwood, B. J., Sitta Sittampalam, G. et al. (2006). A comparison of assay performance measures in screening assays: Signal window, Z′ factor, and assay variability ratio. J Biomol Screen 11, 247-252. doi:10.1177/1087057105285610
Joyce, J. A. and Fearon, D. T. (2015). T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74-80. doi:10.1126/science.aaa6204
Krummel, M. F., Bartumeus, F. and Gérard, A. (2016). T cell migration, search strategies and mechanisms. Nat Rev Immunol 16, 193-201. doi:10.1038/nri.2015.16
Levy, N. (2012). The use of animal as models: Ethical considerations. Int J Stroke 7, 440-442. doi:10.1111/j.1747-4949.2012.00772.x
Mahnke, Y. D., Brodie, T. M., Sallusto, F. et al. (2013). The who’s who of T-cell differentiation: Human memory T-cell subsets. Eur J Immunol 43, 2797-2809. doi:10.1002/eji.201343751
Mariathasan, S., Turley, S. J., Nickles, D. et al. (2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544-548. doi:10.1038/nature25501
Melder, R. J., Munn, L. L., Yamada, S. et al. (1995). Selectin- and integrin-mediated T-lymphocyte rolling and arrest on TNF-alpha-activated endothelium: Augmentation by erythrocytes. Biophys J 69, 2131-2138. doi:10.1016/S0006-3495(95)80087-1
Mestas, J. and Hughes, C. C. W. (2004). Of mice and not men: Differences between mouse and human immunology. J Immunol 172, 2731-2738. doi:10.4049/jimmunol.172.5.2731
Oelkrug, C. and Ramage, J. M. (2014). Enhancement of T cell recruitment and infiltration into tumours. Clin Exp Immunol 178, 1-8. doi:10.1111/cei.12382
Pagès, F., Berger, A. Camus, M. et al. (2005). Effector memory T cells, early metastasis, and survival in colorectal cancer. New Engl J Med 353, 2654-2666. doi:10.1056/nejmoa051424
Peters, K., Helmert, T. Gebhard, S. et al. (2022). Standardized human platelet lysates as adequate substitute to fetal calf serum in endothelial cell culture for tissue engineering. BioMed Res Int 2022, 3807314. doi:10.1155/2022/3807314
Piersma, B., Hayward, M.-K. and Weaver, V. M. (2020). Fibrosis and cancer: A strained relationship. Biochim Biophys Acta 1873, 188356. doi:10.1016/j.bbcan.2020.188356
Rashidian, M., Ingram, J. R., Dougan, M. et al. (2017). Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med 214, 2243-2255. doi:10.1084/jem.20161950
Rashidian, M., LaFleur, M. W., Verschoor, V. L. et al. (2019). Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proc Natl Acad Sci USA 116, 16971-80. doi:10.1073/pnas.1905005116
Riegler, J., Gill, H., Ogasawara, A. et al. (2019). VCAM-1 density and tumor perfusion predict T-cell infiltration and treatment response in preclinical models. Neoplasia 21, 1036-1050. doi:10.1016/j.neo.2019.08.003
Rodrigues, J., Heinrich, M. A., Moreira Teixeira, L. et al. (2020). 3D in vitro model (r)evolution: Unveiling tumor-stroma interactions. Trends Cancer 7, 249-264. doi:10.1016/j.trecan.2020.10.009
Romagnani, P., Lasagni, L., Annunziato, F. et al. (2004). CXC chemokines: The regulatory link between inflammation and angiogenesis. Trends Immunol 25, 201-209. doi:10.1016/j.it.2004.02.006
Salcedo, R., Wasserman, K., Young, H. A. et al. (1999). Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells. In vivo neovascularization induced by stromal-derived factor-1α. Am J Pathol 154, 1125-1135. doi:10.1016/S0002-9440(10)65365-5
Salmon, H., Franciszkiewicz, K., Damotte, D. et al. (2012). Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest 122, 899-910. doi:10.1172/jci45817
Sip, C. G., Bhattacharjee, N. and Folch, A. (2014). Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates. Lab Chip 14, 302-314. doi:10.1039/c3lc51052b
Soragni, C., Vergroesen, T., Hettema, N. et al. (2023). Quantify permeability using on-a-chip models in high-throughput applications. STAR Protoc 4, 102051. doi:10.1016/j.xpro.2023.102051
Staller, P., Sulitkova, J., Lisztwan, J. et al. (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor PVHL. Nature 425, 307-311. doi:10.1038/nature01874
Strieter, R. M., Burdick, M. D., Gomperts, B. N. et al. (2005). CXC chemokines in angiogenesis. Cytokine Growth Factor Rev 16, 593-609. doi:10.1016/j.cytogfr.2005.04.007
Tavaré, R., McCracken, M. N., Zettlitz, K. A. et al. (2014). Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc Natl Acad Sci USA 111, 1108-1113. doi:10.1073/pnas.1316922111
Tokito, T., Akihiko Kawahara, K. A., Ishii, H. et al. (2016). Predictive relevance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy. Eur J Cancer 55, 7-14. doi:10.1016/j.ejca.2015.11.020
Trietsch, S. J., Naumovska, E., Kurek, D. et al. (2017). Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Comm 8, 1-7. doi:10.1038/s41467-017-00259-3
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J. et al. (2014). scikit-image: Image processing in Python. PeerJ 2014, e453. doi:10.7717/peerj.453
van der Woude, L. L., Gorris, M. A. J., Halilovic, A. et al. (2017). Migrating into the tumor: A roadmap for T cells. Trends Cancer 3, 797-808. doi:10.1016/j.trecan.2017.09.006
van Duinen, V., Stam, W., Mulder, E. et al. (2020). Robust and scalable angiogenesis assay of perfused 3D human iPSC-derived endothelium for anti-angiogenic drug screening. Int J Mol Sci 21, 4804. doi:10.3390/ijms21134804
Weissleder, R., Schwaiger, M. C., Gambhir, S. S. et al. (2016). Imaging approaches to optimize molecular therapies. Sci Transl Med 8, 355ps16. doi:10.1126/scitranslmed.aaf3936
Wisdom, K. M., Adebowale, K., Chang, J. et al. (2018). Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat Commun 9, 4144. doi:10.1038/s41467-018-06641-z
Zhang, C., Barrios, M. P., Alani, R. M. et al. (2016). A microfluidic transwell to study chemotaxis. Exp Cell Res 342, 159-165. doi:10.1016/j.yexcr.2016.03.010
Zhang, J., Endres, S. and Kobold, S. (2019). Enhancing tumor T cell infiltration to enable cancer immunotherapy. Immunotherapy 11, 201-213. doi:10.2217/imt-2018-0111
Zhang, M., Qiu, L., Zhang, Y. et al. (2017). CXCL12 enhances angiogenesis through CXCR7 activation in human umbilical vein endothelial cells. Sci Rep 7, 8289. doi:10.1038/s41598-017-08840-y
Zitvogel, L., Pitt, J. M., Daillère, R. et al. (2016). Mouse models in oncoimmunology. Nat Rev Cancer 16, 759-773. doi:10.1038/nrc.2016.91