In vitro model of neurotrauma using the chick embryo to test regenerative bioimplantation
Main Article Content
Abstract
Effective repair of spinal cord injury sites remains a major clinical challenge. One promising strategy is the implantation of multifunctional bioscaffolds to enhance nerve fibre growth, guide regenerating tissue and modulate scarring/inflammation processes. Given their multifunctional nature, such implants require testing in models which replicate the complex neuropathological responses of spinal injury sites. This is often achieved using live, adult animal models of spinal injury. However, these have substantial drawbacks for developmental testing, including the requirement for large numbers of animals, costly infrastructure, high levels of expertise and complex ethical processes. As an alternative, we show that organotypic spinal cord slices can be derived from the E14 chick embryo and cultured with high viability for at least 24 days, with major neural cell types detected. A transecting injury could be reproducibly introduced into the slices and characteristic neuropathological responses similar to those in adult spinal cord injury observed at the lesion margin. This included aligned astrocyte morphologies and upregulation of glial fibrillary acidic protein in astrocytes, microglial infiltration into the injury cavity and limited nerve fibre outgrowth. Bioimplantation of a clinical grade scaffold biomaterial was able to modulate these responses, disrupting the astrocyte barrier, enhancing nerve fibre growth and supporting immune cell invasion. Chick embryos are inexpensive and simple, requiring facile methods to generate the neurotrauma model. Our data show the chick embryo spinal cord slice system could be a replacement spinal injury model for laboratories developing new tissue engineering solutions.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Boni, R., Ali, A., Shavandi, A. et al. (2018). Current and novel polymeric biomaterials for neural tissue engineering. Journal of Biomedical Science, 25, 90. doi:10.1186/s12929-018-0491-8
Bradbury, E. J., & Burnside, E. R. (2019). Moving beyond the glial scar for spinal cord repair. Nature Communications 10, 1–15. doi:10.1038/s41467-019-11707-7
Calderó, J., Brunet, N., Ciutat, D. et al. (2009). Development of microglia in the chick embryo spinal cord: Implications in the regulation of motoneuronal survival and death. Journal of Neuroscience Research 87, 2447–2466. doi:10.1002/jnr.22084
Doblado, L. R., Martínez-Ramos, C., Pradas, M. M. (2021). Biomaterials for Neural Tissue Engineering. Frontiers in Nanotechnology, 3. doi:10.3389/fnano.2021.643507
Domínguez-Bajo, A., González-Mayorga, A., López-Dolado, E. et al. (2020). Graphene Oxide Microfibers Promote Regenerative Responses after Chronic Implantation in the Cervical Injured Spinal Cord. ACS Biomaterials Science and Engineering 6, 2401–2414. doi:10.1021/acsbiomaterials.0c00345
Ferretti, P. and Whalley, K. (2008). Successful neural regeneration in amniotes: the developing chick spinal cord. Cellular and Molecular Life Sciences 65, 45–53. doi:10.1007/s00018-007-7430-2
Führmann T., Anandakumaran, P. N., Shoichet, M. S. (2017). Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help? Advanced Healthcare Materials 6. doi:10.1002/adhm.201601130
Galli, R., Sitoci-Ficici, K. H., Uckermann, O. et al. (2018). Label-free multiphoton microscopy reveals relevant tissue changes induced by alginate hydrogel implantation in rat spinal cord injury. Scientific Reports 8, 1–13. doi:10.1038/s41598-018-29140-z
Guijarro-Belmar, A., Viskontas, M., Wei, Y. et al. (2019). Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans In Vitro and Transforms Postlesion Inhibitory Environment to Promote Axonal Outgrowth in an Ex Vivo Model of Spinal Cord Injury. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 39, 8330–8346. doi:10.1523/JNEUROSCI.0374-19.2019
Hasan, S. J., Keirstead, H. S., Muir, G. D., & Steeves, J. D. (1993). Axonal regeneration contributes to repair of injured brainstem-spinal neurons in embryonic chick. The Journal of Neuroscience 13, 492–507. doi:10.1523/JNEUROSCI.13-02-00492.1993
Himmels, P., Paredes, I., Adler, H. et al. (2017). Motor neurons control blood vessel patterning in the developing spinal cord. Nature Communications 8, 14583. doi:10.1038/ncomms14583
Hurtado, A., Cregg, J. M., Wang, H. B. et al. (2011). Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers. Biomaterials 32, 6068–6079. doi:10.1016/j.biomaterials.2011.05.006
Kourgiantaki, A., Tzeranis, D. S., Karali, K. et al. (2020). Neural stem cell delivery via porous collagen scaffolds promotes neuronal differentiation and locomotion recovery in spinal cord injury. Npj Regenerative Medicine 5, 1–14. doi:10.1038/s41536-020-0097-0
Lee, J. H., Shin, H., Shaker, M. R. et al. (2022). Production of human spinal-cord organoids recapitulating neural-tube morphogenesis. Nat Biomed Eng 6, 435-448. doi:10.1038/s41551-022-00868-4
Mogas Barcons, A., Chari, D. M., & Adams, C. (2021). Enhancing the regenerative potential of stem cell-laden, clinical-grade implants through laminin engineering. Materials Science and Engineering C 123, 111931. doi:10.1016/j.msec.2021.111931
Ogaki, A., Ikegaya, Y., Koyama, R. (2022) Replacement of Mouse Microglia With Human Induced Pluripotent Stem Cell (hiPSC)-Derived Microglia in Mouse Organotypic Slice Cultures. Front Cell Neurosci 16, 918442. doi:10.3389/fncel.2022.918442
Sharma, A. L.,, Wang H., Zhang, Z. et al. (2022) HIV promotes neurocognitive impairment by damaging the hippocampal microvessels. Mol Neurobiol 59, 4966-4986. doi:10.1007/s12035-022-02890-8
Shimizu, I., Oppenheim, R. W., O’Brien, M., & Shneiderman, a. (1990). Anatomical and functional recovery following spinal cord transection in the chick embryo. J Neurobiol 21, 918–937. doi:10.1002/neu.480210609
Tubby, K. C., Norval, D., & Price, S. R. (2013). Chicken embryo spinal cord slice culture protocol. Journal of Visualized Experiments 73, 1–6. doi:10.3791/50295
Walsh, C. M., Wychowaniec, J. K., Costello, L. et al. (2023) An in vitro and ex vivo analysis of the potential of gelMA hydrogels as a therapeutic platform for preclinical spinal cord injury. Advanced Healthcare Materials, e2300951. doi:10.1002/adhm.202300951
Weightman, A. P., Pickard, M. R., Yang, Y., & Chari, D. M. (2014). An in vitro spinal cord injury model to screen neuroregenerative materials. Biomaterials 35, 3756–3765. doi:10.1016/j.biomaterials.2014.01.022
Whalley, K., O’Neill, P., & Ferretti, P. (2006). Changes in response to spinal cord injury with development: Vascularization, hemorrhage and apoptosis. Neuroscience 137, 821–832. doi:10.1016/j.neuroscience.2005.07.064
Wu, G. H., Shi, H. J., Che, M. T. et al. (2018). Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSC-derived neural network tissue. Biomaterials 181, 15–34. doi:10.1016/j.biomaterials.2018.07.010
Xue, W., Li, B., Liu, H. et al. (2022) Generation of dorsoventral human spinal cord organoids via functionalizing composite scaffold for drug testing. iScience 26, 105898. doi:10.1016/j.isci.2022.105898
Yang, Z., Zhang, A., Duan, H. et al. (2015). NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America 112, 13354–13359. doi:10.1073/pnas.1510194112
Yang, C., Li, X., Li, S. et al. (2019) Organotypic slice culture based on in ovo electroporation for chicken embryonic central nervous system. J Cell Mol Med 23, 1813-1826. doi:10.1111/jcmm.14080