Developing prototypes of a modernized approach to assess crop protection chemical safety

Main Article Content

Richard Currie , John Abbott, David A. Dreier, Haitian Lu, Tharacad Ramanarayanan, Natalia Ryan, Odette A. Watkins, Douglas C. Wolf
[show affiliations]

Abstract

In 2019, the US EPA Administrator issued a directive directing the agency away from reliance on vertebrate tests by 2035, whilst maintaining high-quality human health and environmental risk assessments. There is no accepted approach to achieve this. The decade-long duration of the crop protection (CP) chemical R&D process therefore requires both the invention and application of a modernized approach to those CP chemical projects entering corporate research portfolios by the mid-2020s. We conducted problem formulation discussions with regulatory agency scientists which created the problem statement: “Develop, demonstrate, and implement a modern scientifically sound and robust strategy that applies appropriate and flexible exposure and effects characterization without chemical specific vertebrate tests to reliably address risk, uncertainties, and deficiencies in data and its interpretation with equivalent confidence as do the currently accepted test guidelines and meet the regulatory needs of the agencies”. The solution must provide the knowledge needed to confidently conclude human health and environmental protective risk assessments. Exploring this led to a conceptual model involving the creation and parallel submission of a new approach without reliance on chemical-specific vertebrate tests. Assessment in parallel to a traditional package will determine whether it supports some, or all, of the necessary risk management actions. Analysis of any deficiencies will provide valuable feedback to focus development of tools or approaches for subsequent iterations. When found to provide sufficient information, it will form the technical foun­dation of stakeholder engagement to explore acceptance of a new approach to CP chemical risk assessment.


Plain language summary
The US EPA, and other regulatory agencies, aim to reduce the use of vertebrate animal tests for assessing risks of crop protection chemicals. There is currently no accepted way to do this. We outline a proposal to perform both the assessment using traditional vertebrate testing and a set of new non-animal methods. These data sets must each be combined with a calculated estimate of user exposure to the pesticide based on its intended use. Comparing the outcome of these two assess­ments will show whether the set of non-animal methods needs to be improved further. When the new approach appears to reliably predict the risks, the different stakeholders must be brought together to assess whether the non-animal methods package is acceptable and can replace the tests on vertebrate animals while maintaining the same level of protection of human health and the environment.

Article Details

How to Cite
Currie, R. (2024) “Developing prototypes of a modernized approach to assess crop protection chemical safety ”, ALTEX - Alternatives to animal experimentation, 41(1), pp. 119–130. doi: 10.14573/altex.2307181.
Section
Articles
References

Alexander-White, C., Bury, D., Cronin, M. et al. (2022). A 10-step framework for use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment. Regul Toxicol Pharmacol 129, 105094. doi:10.1016/j.yrtph.2021.105094

Belanger, S. E., Sanderson, H., Embry, M. R. et al. (2015). It is time to develop ecological thresholds of toxicological concern to assist environmental hazard assessment. Environ Toxicol Chem 34, 2864-2869. doi:10.1002/etc.3132

Bhuller, Y., Ramsingh, D., Beal, M. et al. (2021). Canadian regulatory perspective on next generation risk assessments for pest control products and industrial chemicals. Front Toxicol 3, 748406. doi:10.3389/ftox.2021.748406

Chen, D., Huang, H., Huang, Y. et al. (2023). Toxicity tests for chemical pesticide registration: Requirement differences among the United States, the European Union, Japan, and China? J Agric Food Chem 71, 7192-7200. doi:10.1021/acs.jafc.3c00410

Connors, K. A., Beasley, A., Barron, M. G. et al. (2019). Creation of a curated aquatic toxicology database: EnviroTox. Environ Toxicol Chem 38, 1062-1073. doi:10.1002/etc.4382

Craig, E., Lowe, K., Akerman, G. et al. (2019). Reducing the need for animal testing while increasing efficiency in a pesticide regulatory setting: Lessons from the EPA Office of Pesticide Programs’ Hazard and Science Policy Council. Regul Toxicol Pharmacol 108, 104481. doi:10.1016/j.yrtph.2019.104481

Dent, M. P., Vaillancourt, E., Thomas, R. S. et al. (2021). Paving the way for application of next generation risk assessment to safety decision-making for cosmetic ingredients. Regul Toxicol Pharmacol 125, 105026. doi:10.1016/j.yrtph.2021.105026

Dreier, D. A., Connors, K. A. and Brooks, B. W. (2015). Comparative endpoint sensitivity of in vitro estrogen agonist assays. Regul Toxicol Pharmacol 72, 185-193. doi:10.1016/j.yrtph.2015.04.009

Dreier, D. A., Rodney, S. I., Moore, D. R. J. et al. (2021). Integrating exposure and effect distributions with the ecotoxicity risk calculator: Case studies with crop protection products. Integr Environ Assess Manag 17, 321-330. doi:10.1002/ieam.4344

Embry, M. R., Bachman, A. N., Bell, D. R. et al. (2014). Risk assessment in the 21st century: Roadmap and matrix. Crit Rev Toxicol 44, Suppl 3, 6-16. doi:10.3109/10408444.2014.931924

Escher, S. E., Partosch, F., Konzok, S. et al. (2022). Development of a roadmap for action on new approach methodologies in risk assessment. EFSA J 19, 7341E. doi:10.2903/sp.efsa.2022.EN-7341

Hilton, G. M., Adcock, C., Akerman, G. et al. (2022). Rethinking chronic toxicity and carcinogenicity assessment for agrochemicals project (ReCAAP): A reporting framework to support a weight of evidence safety assessment without long-term rodent bioassays. Regul Toxicol Pharmacol 131, 105160. doi:10.1016/j.yrtph.2022.105160

Janowska-Sejda, E., Adeleye, Y. and Currie, R. A. (2022). Exploration of the DARTable genome – A resource enabling data-driven NAMs for developmental and reproductive toxicity prediction. Front Toxicol 3, 806311. doi:10.3389/ftox.2021.806311

Johnson, K. J., Auerbach, S. S., Stevens, T. et al. (2022). A transformative vision for an omics-based regulatory chemical testing paradigm. Toxicol Sci 190, 127-132. doi:10.1093/toxsci/kfac097

Judson, R. S., Magpantay, F. M., Chickarmane, V. et al. (2015). Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor. Toxicol Sci 148, 137-154. doi:10.1093/toxsci/kfv168

Judson, R. S., Paul Friedman, K., Houck, K. et al. (2018). New approach methods for testing chemicals for endocrine disruption potential. Curr Opin Toxicol 9, 40-47. doi:10.1016/j.cotox.2018.10.002

Kavlock, R. J., Ankley, G. T., Blancato, J. N. et al. (2003). A Framework for a Computational Toxicology Research Program in ORD. U.S. Environmental Protection Agency. Washington, DC, EPA 600/R-03/065 (NTIS PB2005-105438). https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=100046MA.txt

Kavlock, R. J., Bahadori, T., Barton-Maclaren, T. S. et al. (2018). Accelerating the pace of chemical risk assessment. Chem Res Toxicol 31, 287-290. doi:10.1021/acs/chemrestox.7b00339

Kleinstreuer, N. C., Ceger, P., Watt, E. D. et al. (2017). Development and validation of a computational model for androgen receptor activity. Chem Res Toxicol 30, 946-964. doi:10.1021/acs.chemrestox.6b00347

Kroes, R. and Kozianowski, G. (2002). Threshold of toxicological concern (TTC) in food safety assessment. Toxicol Lett 127, 43-46. doi:10.1016/s0378-4274(01)00481-7

Kroes, R., Renwick, A. G., Feron, V. et al. (2007). Application of the threshold of toxicological concern (TTC) to the safety evaluation of cosmetic ingredients. Food Chem Toxicol 45, 2533-2562. doi:10.1016/j.fct.2007.06.021

Lanzoni, A., Castoldi, A. F., Kass, G. E. et al. (2019). Advancing human health risk assessment. EFSA J 17, Suppl 1, e170712. doi:10.2903/j.efsa.2019.e170712

Lehman, A. J., Laug, E. P., Woodard, G. et al. (1949). Procedures for the appraisal of the toxicity of chemicals in foods. Food Drug Cosmet Law Q 4, 412-434. https://www.jstor.org/stable/26651773

Middleton, A. M., Reynolds, J., Cable, S. et al. (2022). Are non-animal systemic safety assessments protective? A toolbox and workflow. Toxicol Sci 189, 124-147. doi:10.1093/toxsci/kfac068

Nitsche, K. S., Müller, I., Malcomber, S. et al. (2022). Implementing organ-on-chip in a next-generation risk assessment of chemicals: A review. Arch Toxicol 96, 711-741. doi:10.1007/s00204-022-03234-0

NRC – National Research Council (2009). Science and Decisions: Advancing Risk Assessment. Washington, DC: The National Academies Press. doi:10.17226/12209

OECD (2020). Overview of Concepts and Available Guidance related to Integrated Approaches to Testing and Assessment (IATA). OECD Series on Testing and Assessment, No. 329. Environment, Health and Safety, Environment Directorate, OECD. https://www.oecd.org/chemicalsafety/risk-assessment/concepts-and-available-guidance-related-to-integrated-approaches-to-testing-and-assessment.pdf

OECD (2022). Case Study on the use of an Integrated Approach for Testing and Assessment (IATA) for New Approach Methodology (NAM) for Refining Inhalation Risk Assessment from Point of Contact Toxicity of the Pesticide, Chlorothalonil. Series on Testing and Assessment, No. 367. http://www.oecd.org/officialdocuments/displaydocument/?cote=env/cbc/mono(2022)31&doclanguage=en

OECD (2023). Guideline No. 497: Defined Approaches on Skin Sensitisation. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. doi:10.1787/b92879a4-en

Pastoor, T. P., Bachman, A. N., Bell, D. R. et al. (2014). A 21st century roadmap for human health risk assessment. Crit Rev Toxicol 44, Suppl 3, 1-5. doi:10.3109/10408444.2014.931923

Paul Friedman, K., Gagne, M., Lit Loo, L. H. et al. (2020). Utility of in vitro bioactivity as a lower bound estimate of in vivo adverse effect levels and in risk-based prioritization. Toxicol Sci 173, 202-225. doi:10.1093/toxsci/kfz201

Ramanarayanan, T., Szarka, A., Flack, S. et al. (2022). Application of a new approach method (NAM) for inhalation risk assessment. Regul Toxicol Pharmacol 133, 105216. doi:10.1016/j.yrtph.2022.105216

Rizzi, C., Villa, S., Cuzzeri, A. S. et al. (2021). Use of the species sensitivity distribution approach to derive ecological threshold of toxicological concern (eco-TTC) for pesticides. Int J Environ Res Public Health 18, 12078. doi:10.3390/ijerph182212078

Sauve-Ciencewicki, A., Davis, K. P., McDonald, J. et al. (2019). A simple problem formulation framework to create the right solution to the right problem. Regul Toxicol Pharmacol 101, 187-193. doi:10.1016/j.yrtph.2018.11.015

Solomon, K., Giesy, J. and Jones, P. (2000). Probabilistic risk assessment of agrochemicals in the environment. Crop Protection 19, 649-655. doi:10.1016/S0261-2194(00)00086-7

Stucki, A. O., Barton-Maclaren, T.S., Bhuller, Y. et al. (2022). Use of new approach methodologies (NAMs) to meet regulatory requirements for the assessment of industrial chemicals and pesticides for effects on human health. Front Toxicol 4, 964553. doi:10.3389/ftox.2022.964553

Suter, G. W. (2008). Ecological risk assessment in the USEPA: A historical overview. Integr Environ Assess Manag 4, 285-289. doi:10.1897/IEAM_2007-062

Thomas, R. S., Bahadori, T., Buckley, T. J. et al. (2019). The next generation blueprint of computational toxicology at the U.S. Environmental Protection Agency. Toxicol Sci 169, 317-332. doi:10.1093/toxsci/kfz058

US EPA (1992). Framework for Ecological Risk Assessment. EPA/630/R-92/001. https://www.epa.gov/sites/default/files/2014-11/documents/framework_eco_assessment.pdf

US EPA (2013). Guiding Principles for Data Requirements. U.S. Environmental Protection Agency, Washington, DC 31 May 2013. https://www.epa.gov/sites/default/files/2016-01/documents/data-require-guide-principle.pdf

US EPA (2019). Directive to Prioritize Efforts to Reduce Animal Testing. Memorandum. U.S. Environmental Protection Agency, Washington, DC. 10 September 2019. https://www.epa.gov/newsreleases/administrator-wheeler-signs-memo-reduce-animal-testing-awards-425-million-advance

US EPA (2021). EPA New Approach Methods Work Plan. Office of Research and Development. Office of Chemical Safety and Pollution Prevention. U.S. Environmental Protection Agency, Washington, DC. December 2021. EPA 600/X-21/209. https://www.epa.gov/system/files/documents/2021-11/nams-work-plan_11_15_21_508-tagged.pdf

US EPA (2023a). Master List of Test Guidelines for Pesticides and Toxic Substances. https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/master-list-test-guidelines-pesticides-and-toxic (accessed April 2023)

US EPA (2023b). Models for Pesticide Risk Assessment. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/models-pesticide-risk-assessment (accessed May 2023)

Williams, E. S., Berninger, J. P. and Brooks, B. W. (2011). Application of chemical toxicity distributions to ecotoxicology data requirements under REACH. Environ Toxicol Chem 30, 1943-1954. doi:10.1002/etc.583

Wolf, D. C., Aggarwal, M., Battalora, M. et al. (2020). Implementing a globally harmonized risk assessment-based approach for regulatory decision-making of crop protection products. Pest Manag Sci 76, 3311-3315. doi:10.1002/ps.5793

Wolf, D. C., Bhuller, Y., Cope, R. et al. (2022). Transforming the evaluation of agrochemicals. Pest Manag Sci 78, 5049-5056. doi:10.1002/ps.7148

Most read articles by the same author(s)