A survey to assess animal methods bias in scientific publishing
Main Article Content
Abstract
Publication of scientific findings is fundamental for research, pushing innovation and generating interventions that benefit society, but it is not without biases. Publication bias is generally recognized as a journal’s preference for publishing studies based on the direction and magnitude of results. However, early evidence of a newly recognized type of publication bias has emerged in which journal policy, peer reviewers, or editors request that animal data be provided to validate studies produced using nonanimal-based approaches. We describe herein “animal methods bias” in publishing: a preference for animal-based methods where they may not be necessary or where nonanimal-based methods may be suitable, which affects the likelihood of a manuscript being accepted for publication. To gather evidence of animal methods bias, we set out to collect the experiences and perceptions of scientists and reviewers related to animal- and nonanimal-based experiments during peer review. We created a cross-sectional survey with 33 questions that was completed by 90 respondents working in various biological fields. Twenty-one survey respondents indicated that they have carried out animal-based experiments for the sole purpose of anticipating reviewer requests. Thirty-one survey respondents indicated that they have been asked by peer reviewers to add animal experimental data to their nonanimal study; 14 of these felt the request was sometimes justified, and 11 did not think it was justified. The data presented provide preliminary evidence of animal methods bias and indicate that status quo and conservatism biases may explain such attitudes by peer reviewers and editors.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Brown, A. W., Mehta, T. S. and Allison, D. B. (2017). Publication bias in science: What is it, why is it problematic, and how can it be addressed? In K. Hall Jamieson, D. M. Kahan and D. A. Scheufele (eds.), The Oxford Handbook of the Science of Science Communication (93-101). Oxford Library of Psychology. doi:10.1093/oxfordhb/9780190497620.013.10
Campanario, J. M. (2009). Rejecting and resisting Nobel class discoveries: Accounts by Nobel laureates. Scientometrics 81, 549-565. doi:10.1007/s11192-008-2141-5
Carroll, H. A., Toumpakari, Z., Johnson, L. et al. (2017). The perceived feasibility of methods to reduce publication bias. PLoS One 12, e0186472. doi:10.1371/journal.pone.0186472
Chen, X., Sun, G., Tian, E. et al. (2021). Modeling sporadic Alzheimer’s disease in human brain organoids under serum exposure. Adv Sci 8, 2101462. doi:10.1002/advs.202101462
Collins, F. S. (2021). Statement on enhancing rigor, transparency, and translatability in animal research. National Institutes of Health (NIH). https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-enhancing-rigor-transparency-translatability-animal--research (accessed 17.02.2022)
Dal-Ré, R., Caplan, A. L. and Marusic, A. (2019). Editors’ and authors’ individual conflicts of interest disclosure and journal transparency. A cross-sectional study of high-impact medical specialty journals. BMJ Open 9, e029796. doi:10.1136/bmjopen-2019-029796
DeVito, N. J. and Goldacre, B. (2019). Catalogue of bias: Publication bias. BMJ Evid Based Med 24, 53-54. doi:10.1136/bmjebm-2018-111107
Elsevier (2016). Is open peer review the way forward? Reviewers’ Update. https://www.elsevier.com/connect/reviewers-update/is-open-peer-review-the-way-forward (accessed 17.02.2022)
Emulate (2020). Emulate Signs Collaborative Agreement with the FDA to Apply Lung-Chip to Evaluate Safety of COVID-19 Vaccines and Protective Immunity Against SARS-CoV-2. Emulate. https://emulatebio.com/press/fda-organ-chip-crada-2020/ (accessed 04.10.2022)
Ewart, L., Apostolou, A., Briggs, S. A. et al. (2022). Performance assessment and economic analysis of a human liver-chip for predictive toxicology. Commun Med 2, 154. doi:10.1038/s43856-022-00209-1
Huh, D., Leslie, D. C., Matthews, B. D. et al. (2012). A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4, 159ra147. doi:10.1126/scitranslmed.3004249
Ingber, D. E. (2020). Is it time for reviewer 3 to request human organ chip experiments instead of animal validation studies? Adv Sci 7, 2002030. doi:10.1002/advs.202002030
Jain, A., Barrile, R., van der Meer, A. D. et al. (2018). Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin Pharmacol Ther 103, 332-340. doi:10.1002/cpt.742
Kim, J., Koo, B.-K. and Knoblich, J. A. (2020). Human organoids: Model systems for human biology and medicine. Nat Rev Mol Cell Biol 21, 571-584. doi:10.1038/s41580-020-0259-3
Krebs, C. E., Camp, C., Constantino, H. et al. (2023). Proceedings of a workshop to address animal methods bias in scientific publishing. ALTEX 40, 677-688. doi:10.14573/altex.2210211
Krebs, H. A. (1970). The history of the tricarboxylic acid cycle. Perspect Biol Med 14, 154-170. doi:10.1353/pbm.1970.0001
Lamers, M. M., Beumer, J., van der Vaart, J. et al. (2020). SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50-54. doi:10.1126/science.abc1669
Manchikanti, L., Kaye, A. D., Boswell, M. et al. (2015). Medical journal peer review: Process and bias. Pain Physician 18, E1-E14. doi:10.36076/ppj/2015.18.e1
Nosek, B. A., Ebersole, C. R., DeHaven, A. C. et al. (2018). The preregistration revolution. Proc Natl Acad Sci U S A 115, 2600-2606. doi:10.1073/pnas.1708274114
Pound, P. and Ritskes-Hoitinga, M. (2018). Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med 16, 304. doi:10.1186/s12967-018-1678-1
Resch, K. I., Ernst, E. and Garrow, J. (2000). A randomized controlled study of reviewer bias against an unconventional therapy. J R Soc Med 93, 164-167. doi:10.1177/014107680009300402
Sachs, N., Ommen, D. D. Z., Papaspyropoulos, A. et al. (2018). Long-term expanding human airway organoids for disease modelling. bioRXiv, 318444. doi:10.1101/318444
Sachs, N., Papaspyropoulos, A., Zomer‐van Ommen, D. D. et al. (2019). Long‐term expanding human airway organoids for disease modeling. EMBO J 38, e100300. doi:10.15252/embj.2018100300
Seok, J., Warren, H. S., Cuenca, A. G. et al. (2013). Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110, 3507-3512. doi:10.1073/pnas.1222878110
Sharma, A., Minh Duc, N. T., Luu Lam Thang, T. et al. (2021). A consensus-based checklist for reporting of survey studies (CROSS). J Gen Intern Med 36, 3179-3187. doi:10.1007/s11606-021-06737-1
Triunfol, M. (2021). The coming of age of organoids. BioMed21.org. https://biomed21.org/2021/06/the-coming-of-age-of-organoids/ (accessed 17.02.2022)
Veening-Griffioen, D. (2021). Tradition, not science, is the basis of animal model selection in translational and applied research. ALTEX 38, 49-62. doi:10.14573/altex.2003301
Walsh, E., Rooney, M., Appleby, L. et al. (2000). Open peer review: A randomised controlled trial. Br J Psychiatry 176, 47-51. doi:10.1192/bjp.176.1.47
Wolfram, D., Wang, P., Hembree, A. et al. (2020). Open peer review: Promoting transparency in open science. Scientometrics 125, 1033-1051. doi:10.1007/s11192-020-03488-4
Youk, J., Kim, T., Evans, K. V. et al. (2020). Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2. Cell Stem Cell 27, 905-919.e10. doi:10.1016/j.stem.2020.10.004