Off to a good start? Review of the predictivity of reactivity methods modelling the molecular initiating event of skin sensitization
Main Article Content
Abstract
The assessment of skin sensitizing properties of chemicals has moved away from animal methods to new approach methodologies (NAM), guided by qualitative mechanistic understanding operationalized in an adverse outcome pathway (AOP). As with any AOP, the molecular initiating event (MIE) of covalent binding of a chemical to skin proteins is particularly important. This MIE has been modelled by several test methods by measuring the reaction of a test chemical with model peptides in chemico. To better understand the similarities and differences, a data repository with publicly available data for the direct peptide reactivity assay (DPRA), amino acid derivative reactivity assay (ADRA) and kinetic DPRA (kDPRA), as well as the peroxidase peptide reactivity assay (PPRA) was assembled. The repository comprises 260 chemicals with animal and human reference data, data on four relevant physicochemical properties, and between 161 to 242 test chemical results per test method. First, an overview of the experimental conditions of the four test methods was compiled allowing to readily compare them. Second, data analyses demonstrated that the test methods’ predictivity was consistently reduced for poorly watersoluble chemicals and that the DPRA and ADRA can be used interchangeably. It also revealed new categorization thresholds for the DPRA and ADRA that are potentially relevant for strategic uses. In summary, a detailed assessment of reactivity test methods is provided, highlighting their potential and limitations. The results presented are intended to stimulate scientific discussion around test methods modelling the MIE of the skin sensitization AOP.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Allen, T. E., Goodman, J. M., Gutsell, S. et al. (2014). Defining molecular initiating events in the adverse outcome pathway framework for risk assessment. Chem Res Toxicol 27, 2100-2112. doi:10.1021/tx500345j
Allen, T. E., Goodman, J. M., Gutsell, S. et al. (2016). A history of the molecular initiating event. Chem Res Toxicol 29, 2060-2070. doi:10.1021/acs.chemrestox.6b00341
Cho, S. A., An, S., Park, J. H. (2019). High-throughput screening (HTS)-based spectrophotometric direct peptide reactivity assay (Spectro-DPRA) to predict human skin sensitization potential. Toxicol Lett 314, 27-36. doi:10.1016/j.toxlet.2019.07.014
Fujita, M., Yamamoto, Y., Tahara, H. et al. (2014). Development of a prediction method for skin sensitization using novel cysteine and lysine derivatives. J Pharmacol Toxicol Methods 70, 94-105. doi:10.1016/j.vascn.2014.06.001
Gerberick, G. F., Vassallo, J. D., Bailey, R. E. et al. (2004). Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci 81, 332-343. doi:10.1093/toxsci/kfh213
Gerberick, G. F., Vassallo, J. D., Foertsch, L. M. et al. (2007). Quantification of chemical peptide reactivity for screening contact allergens: A classification tree model approach. Toxicol Sci 97, 417-427. doi:10.1093/toxsci/kfm064
Gerberick, G. F., Troutman, J. A., Foertsch, L. M. et al. (2009). Investigation of peptide reactivity of pro-hapten skin sensitizers using a peroxidase-peroxide oxidation system. Toxicol Sci 112, 164-174. doi:10.1093/toxsci/kfp192
Gilmour, N., Kern, P. S., Alépée, N. et al. (2020). Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul Toxicol Pharmacol, 104721. doi:10.1016/j.yrtph.2020.104721
Grégoire, S., Cubberley, R., Duplan, H. et al. (2019). Use of a simple in vitro test to assess loss of chemical due to volatility during an in vitro human skin absorption study. Skin Pharmacol Physiol 32, 117-124. doi:10.1159/000497105
Hoffmann, S., Edler, L., Gardner, I. et al. (2008). Points of reference in the validation process: The report and recommendations of ECVAM Workshop 66. Altern Lab Anim 36, 343-352. doi:10.1177/026119290803600311
Hoffmann, S., Alépée, N., Gilmour, N. et al. (2022). Expansion of the cosmetics Europe skin sensitisation database with new substances and PPRA data. Regul Toxicol Pharmacol 131, 105169. doi:10.1016/j.yrtph.2022.105169
Imamura, M., Wanibuchi, S., Yamamoto, Y. et al. (2021). Improving predictive capacity of the amino acid derivative reactivity assay test method for skin sensitization potential with an optimal molar concentration of test chemical solution. J Appl Toxicol 41, 303-329. doi:10.1002/jat.4082
Irizar, A., Bender, H., Griem, P. et al. (2022). Reference chemical potency list (RCPL): A new tool for evaluating the accuracy of skin sensitisation potency measurements by new approach methodologies (NAMs). Regul Toxicol Pharmacol 134, 105244. doi:10.1016/j.yrtph.2022.105244
Kleinstreuer, N. C., Hoffmann, S., Alépée, N. et al. (2018). Non-animal methods to predict skin sensitization (II): An assessment of defined approaches (*). Crit Rev Toxicol 48, 359-374. doi:10.1080/10408444.2018.1429386
Natsch, A. and Emter, R. (2017). Reaction chemistry to characterize the molecular initiating event in skin sensitization: A journey to be continued. Chem Res Toxicol 30, 315-331. doi:10.1021/acs.chemrestox.6b00365
Natsch, A., Landsiedel, R. and Kolle, S. N. (2021). A triangular approach for the validation of new approach methods for skin sensitization. ALTEX 38, 669-677. doi:10.14573/altex.2105111
Natsch, A. and Gerberick, G. F. (2022). Integrated skin sensitization assessment based on OECD methods (I): Deriving a point of departure for risk assessment. ALTEX 39, 636-646. doi:10.14573/altex.2201141
Natsch, A., Kleinstreuer, N. and Asturiol, D. (2023). Reduced specificity for the local lymph node assay for lipophilicchemicals: Implications for the validation of new approach methods for skin sensitization. Regul Toxicol Pharmacol 138, 105333. doi:10.1016/j.yrtph.2023.105333
OECD (2014). The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins. OECD Series on Testing and Assessment, No. 168. OECD Publishing, Paris. doi:10.1787/9789264221444-en
OECD (2021a). Guideline No. 497: Defined Approaches on Skin Sensitisation. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing. doi:10.1787/20745788
OECD (2021b). Supporting Document to the OECD Guideline 497 on defined approaches for skin sensitisation. Series on Testing and Assessment, No. 336. https://one.oecd.org/document/ENV/CBC/MONO(2021)11/En/pdf
OECD (2023a). Test No. 442C: In Chemico Skin Sensitisation: Assays addressing the Adverse Outcome Pathway key event on covalent binding to proteins. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. doi:10.1787/9789264229709-en
OECD (2023b). Test No. 442E: In Vitro Skin Sensitisation: In Vitro Skin Sensitisation assays addressing the Key Event on activation of dendritic cells on the Adverse Outcome Pathway for Skin Sensitisation. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing. doi:10.1787/9789264264359-en
OECD (2023c) Test No. 442D: In Vitro Skin Sensitisation: ARE-Nrf2 Luciferase Test Method. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing. doi:10.1787/9789264229822-en
Paini, A., Campia, I., Cronin, M. T. D. et al. (2022). Towards a qAOP framework for predictive toxicology – Linking data to decisions. Comput Toxicol 21, 100195. doi:10.1016/j.comtox.2021.100195
Patlewicz, G., Casati, S., Basketter, D. A. et al. (2016). Can currently available non-animal methods detect pre and pro-haptens relevant for skin sensitization? Regul Toxicol Pharmacol 82, 147-155. doi:10.1016/j.yrtph.2016.08.007
Ryan, C. A., Troutman, J. A., Kern, P. S. et al. (2020). Refinement of the peroxidase peptide reactivity assay and prediction model for assessing skin sensitization potential. Toxicol Sci 178, 88-103. doi:10.1093/toxsci/kfaa137
Spicer, C. W., Gordon, S. M., Kelly, T. J. et al. (2002). Hazardous Air Pollutant Handbook. CRC Press. doi:10.1201/9781420032352
Takenouchi, O., Miyazawa, M., Saito, K. et al. (2013). Predictive performance of the human cell line activation test (h-CLAT) for lipophilic chemicals with high octanol-water partition coefficients. J Toxicol Sci 38, 599-609. doi:10.2131/jts.38.599
Urbisch, D., Mehling, A., Guth, K. et al. (2015). Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol 71, 337-351. doi:10.1016/j.yrtph.2014.12.008
Wareing, B., Urbisch, D., Kolle, S. N. et al. (2017). Prediction of skin sensitization potency sub-categories using peptide reactivity data. Toxicol In Vitro 45, 134-145. doi:10.1016/j.tiv.2017.08.015
Wei, Z., Fang, Y., Gosztyla, M. L. et al. (2021). A direct peptide reactivity assay using a high-throughput mass spectrometry screening platform for detection of skin sensitizers. Toxicol Lett 338, 67-77. doi:10.1016/j.toxlet.2020.12.002