REACH out-numbered! The future of REACH and animal numbers

Main Article Content

Costanza Rovida, Francois Busquet, Marcel Leist, Thomas Hartung
[show affiliations]


The EU’s REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) Regulation requires animal testing only as a last resort. However, our study (Knight et al., 2023) in this issue reveals that approximately 2.9 million animals have been used for REACH testing for reproductive toxicity, developmental toxicity, and repeated-dose toxicity alone as of December 2022. Currently, additional tests requiring about 1.3 million more animals are in the works. As compliance checks continue, more animal tests are anticipated. According to the European Chemicals Agency (ECHA), 75% of read-across methods have been rejected during compliance checks. Here, we estimate that 0.6 to 3.2 million animals have been used for other endpoints, likely at the lower end of this range. The ongoing discussion about the grouping of 4,500 regis­tered petrochemicals can still have a major impact on these numbers. The 2022 amendment of REACH is estimated to add 3.6 to 7.0 million animals. This information comes as the European Parliament is set to consider changes to REACH that could further increase animal testing. Two proposals currently under discussion would likely necessitate new animal testing: extending the requirement for a chemical safety assessment (CSA) to Annex VII substances could add 1.6 to 2.6 million animals, and the registration of polymers adds a challenge comparable to the petrochemical discussion. These findings high­light the importance of understanding the current state of REACH animal testing for the upcoming debate on REACH revisions as an opportunity to focus on reducing animal use.

Article Details

How to Cite
Rovida, C. (2023) “REACH out-numbered! The future of REACH and animal numbers”, ALTEX - Alternatives to animal experimentation, 40(3), pp. 367–388. doi: 10.14573/altex.2307121.
Food for Thought ...

Beal, M. A., Gagne, M., Kulkarni, S. A. et al. (2022). Implementing in vitro bioactivity data to modernize priority setting of chemical inventories. ALTEX 39, 123-139. doi:10.14573/altex.2106171

Brambilla, G. and Martelli, A. (2009). Update on genotoxicity and carcinogenicity testing of 472 marketed pharmaceuticals. Mutat Res 681, 209-229. doi:10.1016/j.mrrev.2008.09.002

Busquet, F., Kleensang, A., Rovida, C. et al. (2020). New European Union statistics on laboratory animal use – What really counts! ALTEX 37, 167-186. doi:10.14573/altex.2003241

Clark, C. R., McKee, R. H., Freeman, J. J. et al. (2013). A GHS-consistent approach to health hazard classification of petroleum substances, a class of UVCB substances. Regul Toxicol Pharmacol 67, 409-420. doi:10.1016/j.yrtph.2013.08.020

Concawe (2019). REACH Roadmap for Petroleum Substances. European Petroleum Refiners Association – Concawe Division.

ECHA (2017a). 2017a). Guidance on Information Requirements and Chemical Safety Assessment – Chapter R.7a: Endpoint specific guidance. ECHA-17-G-18-EN. doi:10.2823/337352

ECHA (2017b). Read-Across Assessment Framework (RAAF) – Considerations on multi-constituent substances and UVCBs. ECHA-17-R-04-EN. doi:10.2823/794394

ECHA (2017c). Approach on how to prioritise and address petroleum and coal stream UVCB substances for further work under the Roadmap for SVHC identification and implementation of REACH Risk Management Measures.

ECHA (2020). Testing Proposal Decision on Substance EC 295- 332-8 “Extracts (petroleum), deasphalted vacuum residue solvent”. (accessed 02.09.2020)

ECHA (2021). Report on the Operation of REACH and CLP 2021. ECHA-21-R-06-EN. doi:10.2823/041059

ECHA (2023). The use of alternatives to testing on animals for the REACH Regulation. Fifth report under Article 117(3) of the REACH Regulation. June 2023. ECHA-23-R-07-EN. doi:10.2823/805454

EFSA (2018). Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC)No 1107/2009. EFSA J 16, 5311, 135pp. doi:10.2903/j.efsa.2018.5311

EFSA (2022). Development of a Roadmap for Action on New Approach Methodologies in Risk Assessment. EFSA-Q-2022-00231. doi:10.2903/sp.efsa.2022.EN-7341

Escher, S. E., Kamp, H., Bennekou, S. H. et al. (2019). Towards grouping concepts based on new approach methodologies in chemical hazard assessment: The read-across approach of the EU-ToxRisk project. Arch Toxicol 93, 3643-3667. doi:10.1007/s00204-019-02591-7

Farhana, T., Farhana, H., Fahima, B. A. et al. (2019). Developmental pliability in zebrafish: An experimental enquiry of acute salinity stress on the early life of zebrafish. Aquac Rep 14, 100189. doi:10.1016/j.aqrep.2019.100189

Feder, P. I. and Hertzberg, R. C. (2013). Assessing the mammalian toxicity of high-boiling point petroleum substances. Regul Toxicol Pharmacol 67, Suppl 2, S1-3. doi:10.1016/j.yrtph.2013.08.006

Fentem, J., Malcomber, I., Maxwell, G. et al. (2021). Upholding the EU’s Commitment to ‘animal testing as a last resort’ under REACH requires a paradigm shift in how we assess chemical safety to close the gap between regulatory testing and modern safety science. Altern Lab Anim 49, 122-132. doi:10.1177/02611929211040824

Fritsche, E., Alm, H., Baumann, J. et al. (2015). Literature review on in vitro and alternative developmental neurotoxicity (DNT) testing methods. EFSA Supporting Publication 12, 778E. doi:10.2903/sp.efsa.2015.EN-778

Golden, E., Maertens, M., Hartung, T. et al. (2021). Mapping respiratory sensitization: How useful are our current tools? Chem Res Toxicol 34, 473-482. doi:10.1021/acs.chemrestox.0c00320

Groh, K. J., Arp, H. P. H., MacLeod, M. et al. (2022). Assessing and managing environmental hazards of polymers: Historical development, science advances and policy options. Environ Sci Process Impacts 25, 10-25. doi:10.1039/D2EM00386D

Hartung, T. and Rovida, C. (2009). That which must not, cannot be... a reply to the EChA and EDF responses to the REACH analysis of animal use and costs. ALTEX 26, 307-311. doi:10.14573/altex.2009.4.307

House, J. S., Grimm, F. A., Klaren, W. D. et al. (2022). Grouping of UVCB substances with dose-response transcriptomics data from human cell-based assays, ALTEX 39, 388-404. doi:10.14573/altex.2107051

Juberg, D. R., Borghoff, S. J. and Becker, R. A. (2014). Lessons learned, challenges, and opportunities: The U.S. endocrine disruptor screening program. ALTEX 31, 63-78. doi:10.14573/altex.1309171

Ketelslegers, H., Rusyn, I. and Boogaard, P. (2020). Cat-App: New Technologies to Underpin Category Approaches and Read-across in Regulatory Programmes. (accessed 08.07.2023)

Kirkland, D., Aardema, M., Henderson, L. et al. (2005). Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 584, 1-256. doi:10.1016/j.mrgentox.2005.02.004

Kirkland, D., Pfuhler, S., Tweats, D. et al. (2007). How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: Report of an ECVAM workshop. Mutat Res 628, 31-55. doi:10.1016/j.mrgentox.2006.11.008

Knight, J., Rovida, C., Kreiling, R. et al. (2021). Continuing animal tests on cosmetic ingredients for REACH in the EU. ALTEX 38, 653-668. doi:10.14573/altex.2104221

Knight, J., Hartung, T. and Rovida, C. (2023). 4.2 million and counting… The animal toll for REACH systemic toxicity studies. ALTEX 40, 389-407. doi:10.14573/altex.2303201

Leist, M., Hartung, T. and Nicotera, P. (2008). The dawning of a new age of toxicology. ALTEX 25, 103-114. doi:10.14573/altex.2008.2.103

Lithner, D., Larsson, A. and Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409, 3309-3324. doi:10.1016/j.scitotenv.2011.04.038

Luechtefeld, T., Maertens, A., Russo, D. P. et al. (2016). Global analysis of publicly available safety data for 9,801 substances registered under REACH from 2008-2014. ALTEX 33, 95-109. doi:10.14573/altex.1510052

Luechtefeld, T., Marsh, D., Rowlands, C. et al. (2018). Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci 165, 198-212. doi:10.1093/toxsci/kfy152

Ly Pham, L., Watford, S., Pradeep, P. et al. (2020). Variability in in vivo studies: Defining the upper limit of performance for predictions of systemic effect levels. Comput Toxicol 1, 100126. doi:10.1016/j.comtox.2020.100126

Manibusan, M. K. and Touart, L. W. (2017). A comprehensive review of regulatory test methods for endocrine adverse health effects. Crit Rev Toxicol 47, 433-481. doi:10.1080/10408444.2016.1272095

McCarren, P., Springer, C. and Whitehead, L. (2011). An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential. J Cheminform 3, 51. doi:10.1186/1758-2946-3-51

McKee, R. H. and White, R. (2014). The mammalian toxicological hazards of petroleum-derived substances: An overview of the petroleum industry response to the high production volume challenge program. Int J Toxicol 33, Suppl 1, 4S-16S. doi:10.1177/1091581813514024

McKee, R. H., Nicolich, M., Roy, T. et al. (2014). Use of a statistical model to predict the potential for repeated dose and developmental toxicity of dermally administered crude oil and relation to reproductive toxicity. Int J Toxicol 33, Suppl 1, 17S-27S. doi:10.1177/1091581813504226

McKee, R. H., Adenuga, M. D. and Carrillo, J. C. (2015). Characterization of the toxicological hazards of hydrocarbon solvents. Crit Rev Toxicol 45, 273-365. doi:10.3109/10408444.2015.1016216

Meigs, L., Smirnova, L., Rovida, C. et al. (2018). Animal testing and its alternatives – The most important omics is economics. ALTEX 35, 275-305. doi:10.14573/altex.1807041

Moné, M. J., Pallocca, G., Escher, S. E. et al. (2020). Setting the stage for next-generation risk assessment with non-animal approaches: The EU-ToxRisk project experience. Arch Toxicol 94, 3581-3592. doi:10.1007/s00204-020-02866-4

Murray, F. J., Gray, T. M., Roberts, L. G. et al. (2013). Evaluating the male and female reproductive toxicity of high-boiling petroleum substances. Regul Toxicol Pharmacol 67, Suppl 2, S60-S74. doi:10.1016/j.yrtph.2013.04.004

Pallocca, G. and Leist, M. (2022). On the usefulness of animals as a model system (part II): Considering benefits within distinct use domains. ALTEX 39, 531-539. doi:10.14573/altex.2207111

Pallocca, G., Moné, M. J., Kamp, H. et al. (2022a). Next-generation risk assessment of chemicals – Rolling out a human-centric testing strategy to drive 3R implementation: The RISK-HUNT3R-HUNT3R project perspective. ALTEX 39, 419-426. doi:10.14573/altex.2204051

Pallocca, G., Rovida, C. and Leist, M. (2022b). On the usefulness of animals as a model system (part I): Overview of criteria and focus on robustness. ALTEX 39, 347-353. doi:10.14573/altex.2203291

Paul Friedman, K., Gagne, M., Loo, L. H. et al. (2020). Utility of in vitro bioactivity as a lower bound estimate of in vivo adverse effect levels and in risk-based prioritization. Toxicol Sci 173, 202-225. doi:10.1093/toxsci/kfz201

Pedersen, F., de Bruijn, J., Munn, S. et al. (2003). Assessment of additional testing needs under REACH – Effects of (Q)SARs, risk based testing and voluntary industry initiatives. Joint Research Centre Report EUR 20863.

Pereira, P., Macmillan, D. S., Willett, C. et al. (2022). REACHing for solutions: Essential revisions to the EU chemicals regulation to modernise safety assessment. Regul Toxicol Pharmacol 136, 105278. doi:10.1016/j.yrtph.2022.105278

Roth, R. N., Simpson, B. J., Nicolich, M. J. et al. (2013). The relationship between repeat-dose toxicity and aromatic-ring class profile of high-boiling petroleum substances. Regul Toxicol Pharmacol 67, Suppl 2, S30-S45. doi:10.1016/j.yrtph.2013.05.010

Rovida, C. and Hartung, T. (2009). Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements for chemicals – A report by the transatlantic think tank for toxicology (t4). ALTEX 26, 187-208. doi:10.14573/altex.2009.3.187

Rovida, C., Longo, F. and Rabbit, R. R. [Hartung, T.] (2011). How are reproductive toxicity and developmental toxicity addressed in REACH dossiers? ALTEX 28, 273-294. doi:10.14573/altex.2011.4.273

Rovida, C., Barton-Maclaren, T., Benfenati, E. et al. (2020). Internationalisation of read-across as a validated new approach method (NAM) for regulatory toxicology. ALTEX 37, 579-606. doi:10.14573/altex.1912181

Schmidt, B. Z., Lehmann, M., Gutbier, S. et al. (2017). In vitro neurotoxicity screening: An overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 91, 1-33. doi:10.1007/s00204-016-1805-9

Smirnova, L., Hogberg, H. T., Leist, M. et al. (2014). Developmental neurotoxicity – Challenges in the 21st century and in vitro opportunities. ALTEX 31, 129-156. doi:10.14573/altex.1403271

Snyder, R. D. and Green, J. W. (2001). A review of the genotoxicity of marketed pharmaceuticals. Mutat Res 488,151-169. doi:10.1016/s1383-5742(01)00055-2

Taylor, K. (2018). Ten years of REACH – An animal protection perspective. Altern Lab Anim 46, 347-373. doi:10.1177/026119291804600610

van der Jagt, K., Munn, S., Tørsløv, J. et al. (2004). Alternative approaches can reduce the use of test animals under REACH. JRC Report EUR 21405 EN.

von Aulock, S., Busquet, F., Locke, P. et al. (2022). Engagement of scientists with the public and policymakers to promote alternative methods. ALTEX 39, 543-559. doi:10.14573/altex.2209261

Walmsley, R. M. and Billinton, N. (2011). How accurate is in vitro prediction of carcinogenicity? Br J Pharmacol 162, 1250-1258. doi:10.1111/j.1476-5381.2010.01131.x

Wang, X., Li, N., Ma, M. et al. (2022). Immunotoxicity in vitro assays for environmental pollutants under paradigm shift in toxicity tests. Int J Environ Res Public Health 20, 273. doi:10.3390/ijerph20010273

Wang, Z., Walker, G. W., Muir, D. C. G. et al. (2020). Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol 54, 2575-2584. doi:10.1021/acs.est.9b06379

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>