Measuring endogenous corticosterone in laboratory mice - a mapping review, meta-analysis, and open source database

Main Article Content

Stevie van der Mierden, Cathalijn H. C. Leenaars, Erin C. Boyle, Florenza L. Ripoli, Peter Gass, Mattea Durst, Vivian C. Goerlich-Jansson, Paulin Jirkof, Lydia M. Keubler, Steven R. Talbot, Anne Habedank, Lars Lewejohann, René H. Tolba, André Bleich
[show affiliations]

Abstract

Evaluating stress in laboratory animals is a key principle in animal welfare. Measuring corticosterone is a common method to assess stress in laboratory mice. There are, however, numerous methods to measure glucocorticoids with differences in sample matrix (e.g., plasma, urine) and quantification techniques (e.g., enzyme immunoassay or radioimmunoassay). Here, the authors present a mapping review and a searchable database, giving a complete overview of all studies mea­suring endogenous corticosterone in mice up to February 2018. For each study, information was recorded regarding mouse strain and sex; corticosterone sample matrix and quantification technique; and whether the study covered the research theme animal welfare, neuroscience, stress, inflammation, or pain (the themes of specific interest in our con­sortium). Using all database entries for the year 2012, an exploratory meta-regression was performed to determine the effect of predictors on basal corticosterone concentrations. Seventy-five studies were included using the predictors sex, time-since-lights-on, sample matrix, quantification technique, age of the mice, and type of control. Sex, time-since-lights-on, and type of control significantly affected basal corticosterone concentrations. The resulting database can be used, inter alia, for preventing unnecessary duplication of experiments, identifying knowledge gaps, and standardizing or heterogenizing methodologies. These results will help plan more efficient and valid experiments in the future and can answer new questions in silico using meta-analyses.

Article Details

How to Cite
van der Mierden, S. (2021) “Measuring endogenous corticosterone in laboratory mice - a mapping review, meta-analysis, and open source database”, ALTEX - Alternatives to animal experimentation, 38(1), pp. 111–122. doi: 10.14573/altex.2004221.
Section
Articles
References

Åhlgren, J. and Voikar, V. (2019). Experiments done in Black-6 mice: What does it mean? Lab Anim 48, 171-180. doi:10.1038/s41684-019-0288-8

Anisman, H., Hayley, S., Kelly, O. et al. (2001). Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: Mouse strain-dependent outcomes. Behav Neurosci 115, 443-454. doi:10.1037/0735-7044.115.2.443

Archer, D. P., McCann, S. K., Walker, A. M. et al. (2018). Neuroprotection by anaesthetics in rodent models of traumatic brain injury: A systematic review and network meta-analysis. Br J Anaesth 121, 1272-1281. doi:10.1016/j.bja.2018.07.024

Armario, A., Lopez-Calderon, A., Jolin, T. et al. (1986). Sensitivity of anterior pituitary hormones to graded levels of psychological stress. Life Sci 39, 471-475. doi:10.1016/0024-3205(86)90527-8

Ashworth, A., Bardgett, M., Fowler, J. et al. (2015). Comparison of neurological function in males and females from two substrains of C57BL/6 mice. Toxics 3, 1-17. doi:10.3390/toxics3010001

Bailoo, J. D., Reichlin, T. S. and Würbel, H. (2014). Refinement of experimental design and conduct in laboratory animal research. ILAR J 55, 383-391. doi:10.1093/ilar/ilu037

Bekhbat, M., Glasper, E. R., Rowson, S. A. et al. (2018). Measuring corticosterone concentrations over a physiological dynamic range in female rats. Physiol Behav 194, 73-76. doi:10.1016/j.physbeh.2018.04.033

Benedetti, M., Merino, R., Kusuda, R. et al. (2012). Plasma corticosterone levels in mouse models of pain. Eur J Pain 16, 803-815. doi:10.1002/j.1532-2149.2011.00066.x

Beynen, A. C., Gärtner, K. and van Zutphen, L. F. M. (2001). Standardization of animal experimentation. In L. F. M. van Zutphen, V. Baumans and A. C. Beynen (eds.), Principles of Laboratory Animal Science: A Contribution to the Humane Use and Care of Animals and to the Quality of Experimental Results. 2nd edtition. Amsterdam, The Netherlands: Elsevier.

Bleich, A. and Tolba, R. H. (2017). How can we assess their suffering? German research consortium aims at defining a severity assessment framework for laboratory animals. Lab Anim 51, 667. doi:10.1177/0023677217733010

Borah, R., Brown, A. W., Capers, P. L. et al. (2017). Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. BMJ Open 7, e012545. doi:10.1136/bmjopen-2016-012545

Borenstein, M., Hedges, L. V., Higgins, J. P. et al. (2015). Regression in meta-analysis. Comprehensive Meta Analysis Manual. Englewood, USA: Biostat.

Caruso, M., Reiss, D., Caulfield, J. et al. (2018). Adolescent chronic variable social stress influences exploratory behavior and nicotine responses in male, but not female, BALB/cJ mice. Brain Res Bull 138, 37-49. doi:10.1016/j.brainresbull.2017.08.001

de Vries, R. B., Hooijmans, C. R., Tillema, A. et al. (2011). A search filter for increasing the retrieval of animal studies in Embase. Lab Anim 45, 268-270. doi:10.1258/la.2011.011056

Drude, S., Geissler, A., Olfe, J. et al. (2011). Side effects of control treatment can conceal experimental data when studying stress responses to injection and psychological stress in mice. Lab Anim 40, 119-128. doi:10.1038/laban0411-119

Elias, P. K. and Redgate, E. (1975). Effects of immobilization stress on open field behavior and plasma corticosterone levels of aging C57BL/6J mice. Exp Aging Res 1, 127-135. doi:10.1080/03610737508257954

Fanson, K. V., Németh, Z., Ramenofsky, M. et al. (2017). Inter‐laboratory variation in corticosterone measurement: Implications for comparative ecological and evolutionary studies. Methods Ecol Evol 8, 1745-1754. doi:10.1111/2041-210X.12821

Foilb, A. R., Lui, P. and Romeo, R. D. (2011). The transformation of hormonal stress responses throughout puberty and adolescence. J Endocrinol 210, 391-398. doi:10.1530/JOE-11-0206

Grad, B. and Khalid, R. (1968). Circulating corticosterone levels of young and old, male and female C57B1/6J mice. J Gerontol 23, 522-528. doi:10.1093/geronj/23.4.522

Grant, M. J. and Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies. Health Info Libr J 26, 91-108. doi:10.1111/j.1471-1842.2009.00848.x

Higgins, J. P., White, I. R. and Anzures‐Cabrera, J. (2008). Meta‐analysis of skewed data: Combining results reported on log‐transformed or raw scales. Stat Med 27, 6072-6092. doi:10.1002/sim.3427

Hooijmans, C. R., Tillema, A., Leenaars, M. et al. (2010). Enhancing search efficiency by means of a search filter for finding all studies on animal experimentation in PubMed. Lab Anim 44, 170-175. doi:10.1258/la.2010.009117

Jacobsen, K. R., Kalliokoski, O., Teilmann, A. C. et al. (2012). The effect of isoflurane anaesthesia and vasectomy on circulating corticosterone and ACTH in BALB/c mice. Gen Comp Endocrinol 179, 406-413. doi:10.1016/j.ygcen.2012.09.012

Jones, B. C., Sarrieau, A., Reed, C. L. et al. (1998). Contribution of sex and genetics to neuroendocrine adaptation to stress in mice. Psychoneuroendocrinology 23, 505-517. doi:10.1016/S0306-4530(98)00014-6

Keubler, L. M., Hoppe, N., Potschka, H. et al. (2020). Where are we heading? Challenges in evidence-based severity assessment. Lab Anim 54, 50-62. doi:10.1177/0023677219877216

Kilkenny, C., Parsons, N., Kadyszewski, M. F. et al. (2009). Survey of the quality of experimental design, statistical analysis and reporting of research using animals. PLoS One 4, e7824. doi:10.1371/journal.pone.0007824

Kilkenny, C., Browne, W. J., Cuthill, I. C. et al. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol 8, e1000412. doi:10.1371/journal.pbio.1000412

Laber, K., Veatch, L. M., Lopez, M. F. et al. (2008). Effects of housing density on weight gain, immune function, behavior, and plasma corticosterone concentrations in BALB/c and C57BL/6 mice. J Am Assoc Lab Anim Sci 47, 16-23.

Leenaars, C. H., De Vries, R. B., Heming, A. et al. (2020a). Animal models for cystic fibrosis: A systematic search and mapping review of the literature – Part 1: Genetic models. Lab Anim 54, 330-340. doi:10.1177/0023677219868502

Leenaars, C. H., van der Mierden, S., Durst, M. et al. (2020b). Measurement of corticosterone in mice: A protocol for a mapping review. Lab Anim 54, 26-32. doi:10.1177/0023677219868499

Lewis, J. and Elder, P. (1985). An enzyme-linked immunosorbent assay (ELISA) for plasma cortisol. J Steroid Biochem 22, 673-676. doi:10.1016/0022-4731(85)90222-5

Mulligan, M. K., Ponomarev, I., Boehm, S. et al. (2008). Alcohol trait and transcriptional genomic analysis of C57BL/6 substrains. Genes Brain Behav 7, 677-689. doi:10.1111/j.1601-183X.2008.00405.x

Murtagh, R., Behringer, V. and Deschner, T. (2013). LC-MS as a method for non-invasive measurement of steroid hormones and their metabolites in urine and faeces of animals. Wien Tierärztl Monat – Vet Med Austria 100, 247-254.

Newsom, S. E. and Darrach, M. (1955). The effect of corticotropin and corticosterone on the production of hemolytic antibodies in the mouse. Can J Biochem Physiol 33, 374-379. doi:10.1139/o55-049

Oka, K., Noguchi, M., Kitamura, T. et al. (1987). Liquid chromatography and radioimmunoassay compared for determination of cortisol and corticosterone in plasma after a dexamethasone suppression test. Clin Chem 33, 1639-1642. doi:10.1093/clinchem/33.9.1639

Palme, R., Rettenbacher, S., Touma, C. et al. (2005). Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann N Y Acad Sci 1040, 162-171. doi:10.1196/annals.1327.021

Palme, R. (2019). Non-invasive measurement of glucocorticoids: Advances and problems. Physiol Behav 199, 299-243. doi:10.1016/j.physbeh.2018.11.021

R Core Team (2019). R: A Language and Environment for Statistical Computing. https://www.R-project.org

Ralph, C. and Tilbrook, A. (2016). Invited review: The usefulness of measuring glucocorticoids for assessing animal welfare. J Anim Sci 94, 457-470. doi:10.2527/jas.2015-9645

Rød, A. M. K., Harkestad, N., Jellestad, F. K. et al. (2017). Comparison of commercial ELISA assays for quantification of corticosterone in serum. Sci Rep 7, 6748. doi:10.1038/s41598-017-06006-4

Russell, W. M. S. and Burch, R. L. (1959). The Principles of Humane Experimental Technique. Methuen.

Sheriff, M. J., Dantzer, B., Delehanty, B. et al. (2011). Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869-887. doi:10.1007/s00442-011-1943-y

Sittig, L. J., Carbonetto, P., Engel, K. A. et al. (2016). Genetic background limits generalizability of genotype-phenotype relationships. Neuron 91, 1253-1259. doi:10.1016/j.neuron.2016.08.013

Smith, A. J., Clutton, R. E., Lilley, E. et al. (2018). PREPARE: Guidelines for planning animal research and testing. Lab Anim 52, 135-141. doi:10.1177/0023677217724823

Spackman, D. H. and Riley, V. (1978). Corticosterone concentrations in the mouse. Science 200, 87. doi:10.1126/science.635580

Spencer, R. L. and Deak, T. (2017). A users guide to HPA axis research. Physiol Behav 178, 43-65. doi:10.1016/j.physbeh.2016.11.014

Spiga, F., Walker, J. J., Terry, J. R. et al. (2011). HPA axis‐rhythms. Compr Physiol 4, 1273-1298. doi:10.1002/cphy.c140003

Touma, C., Sachser, N., Möstl, E. et al. (2003). Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen Comp Endocrinol 130, 267-278. doi:10.1016/S0016-6480(02)00620-2

Turpeinen, U. and Hämäläinen, E. (2013). Determination of cortisol in serum, saliva and urine. Best Pract Res Clin Endocrinol Metab 27, 795-801. doi:10.1016/j.beem.2013.10.008

Tuttle, A. H., Philip, V. M., Chesler, E. J. et al. (2018). Comparing phenotypic variation between inbred and outbred mice. Nat Methods 15, 994-996. doi:10.1038/s41592-018-0224-7

Valentine, H., Williams, W. O. and Maurer, K. J. (2012). Sedation or inhalant anesthesia before euthanasia with CO2 does not reduce behavioral or physiologic signs of pain and stress in mice. J Am Assoc Lab Anim Sci 51, 50-57.

van der Mierden, S., Savelyev, S. A., IntHout, J. et al. (2018). Intracerebral microdialysis of adenosine and adenosine monophosphate – A systematic review and meta‐regression analysis of baseline concentrations. J Neurochem 147, 58-70. doi:10.1111/jnc.14552

Van Loo, P., Van der Meer, E., Kruitwagen, C. et al. (2004). Long-term effects of husbandry procedures on stress-related parameters in male mice of two strains. Lab Anim 38, 169-177. doi:10.1258/002367704322968858

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. J Stat Softw 36, 1-48. doi:10.18637/jss.v036.i03

Windle, R., Wood, S., Shanks, N. et al. (1998). Ultradian rhythm of basal corticosterone release in the female rat: Dynamic interaction with the response to acute stress. Endocrinology 139, 443-450. doi:10.1210/endo.139.2.5721

Most read articles by the same author(s)