Guidance document on Good Cell and Tissue Culture Practice 2.0 (GCCP 2.0)

Main Article Content

David Pamies, Marcel Leist, Sandra Coecke, Gerard Bowe, David G. Allen, Gerhard Gstraunthaler, Anna Bal-Price, Francesca Pistollato, Rob B. M. de Vries, Helena T. Hogberg, Thomas Hartung , Glyn Stacey
[show affiliations]

Abstract

Good Cell and Tissue Culture Practice (GCCP) 2.0 is an updated guidance document from GCCP 1.0 (published by ECVAM in 2005), which was developed for practical use in the laboratory to assure the reproducibility of in vitro (cell-based) work. The update in the guidance was essential as cell models have advanced dramatically to more complex culture systems and need more comprehensive quality management to ensure reproducibility and high-quality scientific data. This document describes six main principles to consider when performing cell culture including characterization and maintenance of essential characteristics, quality management, documentation and reporting, safety, education and training, and ethics. The document does not intend to impose detailed procedures but to describe potential quality issues. It is foreseen that the document will require further updates as the science and technologies evolve over time.

Article Details

How to Cite
Pamies, D. (2022) “Guidance document on Good Cell and Tissue Culture Practice 2.0 (GCCP 2.0)”, ALTEX - Alternatives to animal experimentation, 39(1), pp. 30–70. doi: 10.14573/altex.2111011.
Section
Articles
References

Adler, S., Allsopp, T., Bremer, S. et al. (2007). hESC technology for toxicology and drug development: Summary of current status and recommendations for best practice and standardization. The Report and Recommendations of an ECVAM Workshop. http://ecvam.jrc.it/publication/hESC_%20010711.pdf

Aguilar, P. S., Baylies, M. K., Fleissner, A. et al. (2013). Genetic basis of cell-cell fusion mechanisms. Trends Genet 29, 427-437. doi:10.1016/j.tig.2013.01.011

Al-Ani, A., Toms, D., Kondro, D. et al. (2018). Oxygenation in cell culture: Critical parameters for reproducibility are routinely not reported. PLoS One 13, e0204269. doi:10.1371/journal.pone.0204269

Andrews, P. W., Baker, D., Benvinisty, N. et al. (2015). Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International stem cell banking initiative (ISCBI). Regen Med 10, Suppl 2, 1-44. doi:10.2217/rme.14.93

Angel, S., von Briesen, H., Oh, Y.-J. et al. (2016). Toward optimal cryopreservation and storage for achievement of high cell recovery and maintenance of cell viability and T cell functionality. Biopreserv Biobank 14, 539-547. doi:10.1089/bio.2016.0046

Assou, S., Bouckenheimer, J., De Vos, J. (2018). Concise review: Assessing the genome integrity of human induced pluripotent stem cells: What quality control metrics? Stem Cells 36, 814-821. doi:10.1002/stem.2797

Awan, M., Buriak, I., Fleck, R. et al. (2020). Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med 15, 1463-1491. doi:10.2217/rme-2019-0145

Babic, Z., Capes-Davis, A., Martone, M. E. et al. (2019). Incidences of problematic cell lines are lower in papers that use RRIDS to identify cell lines. Elife 8, e41676. doi:10.7554/eLife.41676

Bairoch A. (2018). The Cellosaurus, a cell-line knowledge resource. J Biomol Tech 29, 25-38. doi:10.7171/jbt.18-2902-002

Baker, M. (2016a). Is there a reproducibility crisis? Nature 533, 452-454. doi:10.1038/533452a

Baker, M. (2016b). Reproducibility: Respect your cells! Nature 537, 433-435. doi:10.1038/537433a

Baumstummler, A., Chollet, R., Meder, H. et al. (2010). Detection of microbial contaminants in mammalian cell cultures using a new fluorescence-based staining method. Lett Appl Microbiol 51, 671-677. doi:10.1111/j.1472-765X.2010.02952.x

Baust, J. M., Campbell, L. H. and Harbell, J. W. (2017). Best practices for cryopreserving, thawing, recovering, and assessing cells. In Vitro Cell Dev Biol Anim 53, 855-871. doi:10.1007/s11626-017-0201-y

Ben-David, U., Siranosian, B., Ha, G. et al. (2018). Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325-330. doi:10.1038/s41586-018-0409-3

Berkhout, B. (2018). RNAi-mediated antiviral immunity in mammals. Curr Opin Virol 32, 9-14. doi:10.1016/j.coviro.2018.07.008

Berthois, Y., Katzenellenbogen, J. A. and Katzenellenbogen, B. S. (1986). Phenol red in tissue culture media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A 83, 2496-500. doi:10.1073/pnas.83.8.2496

Blazquez-Prunera, A., Diez, J. M., Gajardo, R. et al. (2017). Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction. Stem Cell Res Ther 8, 103. doi:10.1186/s13287-017-0552-z

Bonnier, F., Keating, M. E., Wrobel, T. P. et al. (2015). Cell viability assessment using the Alamar blue assay: A comparison of 2D and 3D cell culture models. Toxicol In Vitro 29, 124-131. doi:10.1016/j.tiv.2014.09.014

Bredenoord, A. L., Clevers, H. and Knoblich, J. A. (2017). Human tissues in a dish: The research and ethical implications of organoid technology. Science 355, eaaf9414. doi:10.1126/science.aaf9414

Brunner, D., Frank, J., Appl, H. et al. (2010). Serum-free cell culture: The serum-free media interactive online database. ALTEX 27, 53-62. doi:10.14573/altex.2010.1.53

Campisi, J. and di Fagagna, F. D. (2007). Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol 8, 729-740. doi:10.1038/nrm2233

Capes-Davis, A., Theodosopoulos, G., Atkin, I. et al. (2010). Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer 127, 1-8. doi:10.1002/ijc.25242

Capes-Davis, A., Reid, Y. A., Kline, M. C. et al. (2013). Match criteria for human cell line authentication: Where do we draw the line? Int J Cancer 132, 2510-2519. doi:10.1002/ijc.27931

Carragher, N., Piccinini, F., Tesei, A. et al. (2018). Concerns, challenges and promises of high-content analysis of 3D cellular models. Nat Rev Drug Discov 17, 607-608. doi:10.1038/nrd.2018.99

Casadevall, A., Steen, R. G. and Fang, F. C. (2014). Sources of error in the retracted scientific literature. FASEB J 28, 3847-3855. doi:10.1096/fj.14-256735

Chan, K. K., Wu, S. M., Nissom, P. M. et al. (2008). Generation of high-level stable transgene expressing human embryonic stem cell lines using Chinese hamster elongation factor-1 alpha promoter system. Stem Cells Dev 17, 825-836. doi:10.1089/scd.2008.0233

Coecke, S., Balls, M., Bowe, G. et al. (2005). Guidance on good cell culture practice – A report of the second ECVAM task force on good cell culture practice. Altern Lab Anim 33, 261-287. doi:10.1177/026119290503300313

Coté, R. (2001). Assessing and controlling microbial contamination in cell cultures. Curr Protoc Cell Biol, Chapter 1, Unit 1.5. doi:10.1002/0471143030.cb0105s01

Daily, K., Sui, S. J. H., Schriml, L. M. et al. (2017). Molecular, phenotypic, and sample-associated data to describe pluripotent stem cell lines and derivatives. Sci Data 4, 170030. doi:10.1038/sdata.2017.30

Darou, S., Henn, A., Alm, K. et al. (2019). Abstract 2157: Eliminating edge effect in 96-well plates by controlling thermal conditions during cell plating. Cancer Res 79, 2157. doi:10.1158/1538-7445.AM2019-2157

Davoli, T. and de Lange, T. (2011). The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 27, 585-610. doi:10.1146/annurev-cellbio-092910-154234

Dirks, W. G., MacLeod, R. A., Nakamura, Y. et al. (2009). Cell line cross-contamination initiative: An interactive reference database of STR profiles covering common cancer cell lines. Int J Cancer 126, 303-304. doi:10.1002/ijc.24999

Drexler, H. G. and Uphoff, C. C. (2002). Mycoplasma contamination of cell cultures: Incidence, sources, effects, detection, elimination, prevention. Cytotechnology 39, 75-90. doi:10.1023/A:1022913015916

Duval, K., Grover, H., Han, L. H. et al. (2017). Modeling physiological events in 2D vs. 3D cell culture. Physiology 32, 266-277. doi:10.1152/physiol.00036.2016

EC (2007). Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. OJ L324, 121-137. http://data.europa.eu/eli/reg/2007/1394/oj

Eskes, C., Bostrom, A. C., Bowe, G. et al. (2017). Good cell culture practices & in vitro toxicology. Toxicol In Vitro 45, 272-277. doi:10.1016/j.tiv.2017.04.022

EU (1995). Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data. OJ L 281, 31-50. http://data.europa.eu/eli/dir/1995/46/oj

EU (2001a). Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC – Commission Declaration. OJ L 106, 1-39. http://data.europa.eu/eli/dir/2001/18/oj

EU (2001b). Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. OJ L 324, 121-137. http://data.europa.eu/eli/reg/2007/1394/oj

EU (2004). Directive 2004/23/EC of the European Parliament and of the Council on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. OJ L 102, 48-58. http://data.europa.eu/eli/dir/2004/23/oj

EU (2006a). Commission Directive 2006/17/EC of 8 February 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells. OJ L 38, 40-52. http://data.europa.eu/eli/dir/2006/17/oj

EU (2006b). Technical Annex 2: Commission Directive 2006/86/EC of 24 October 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards traceability requirements, notification of serious adverse reactions and events and certain technical requirements for the coding, processing, preservation, storage and distribution of human tissues and cells. OJ L 294, 41-43. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006L0086&qid=1594671604632&from=EN

EU (2006c). Technical Annex 1: Commission Directive 2006/17/EC of 8 February 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells. OJ L 38, 43-44. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006L0017&qid=1594672077891&from=EN

EU (2009). Directive 2009/41/EC of the European Parliament and of the Council of 6 May 2009 on the contained use of genetically modified micro-organisms. OJ L 125, 75-97. http://data.europa.eu/eli/dir/2009/41/oj

EU (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. OJ L 276, 33-79. http://data.europa.eu/eli/dir/2010/63/oj

EU (2012). Commission Directive 2012/39/EU of 26 November 2012 amending Directive 2006/17/EC as regards certain technical requirements for the testing of human tissues and cells. OJ L 327, 24-25. http://data.europa.eu/eli/dir/2012/39/oj

EU (2014). Directive 2014/68/EU of the European Parliament and of the Council of May 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of pressure equipment. OJ L 189, 164-259. http://data.europa.eu/eli/dir/2014/68/oj

Falsig, J., Julius, C., Margalith, I. et al. (2008). A versatile prion replication assay in organotypic brain slices. Nat Neurosci 11, 109-117. doi:10.1038/nn2028

FDA (2001). 21CFR1271. Human Cells, Tissues, and Cellular and Tissue-Based Products. Updated 2015.

FDA (2010). CBER Annual Report: Innovative Technology Advancing Public Health.

FDA (2013). 21CFR610. General Biological Products Standards. US Food and Drug Administration; Rockville, MD.

FDA (2015a). 21CFR600. Biological Products: General.

FDA (2015b). 21CFR312. Investigational New Drug Application. Updated 2015.

FDA (2015c). 21CFR210. Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs; General. Updated 2015.

FDA (2019a). 21CFR630. Requirements for Blood and Blood Components Intended for Transfusion or for Further Manufacturing Use. Code of Federal Regulations Title 21, Volume 7.

FDA (2019b). 21CFR606. Current Good Manufacturing Practice for Blood and Blood Components. Code of Federal Regulations Title 21, Volume 7.

Foty, R. (2011). A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp 51, e2720. doi:10.3791/2720

Fountain, D., Ralston, M., Higgins, N. et al. (1997). Liquid nitrogen freezers: A potential source of microbial contamination of hematopoietic stem cell components. Transfusion 37, 585-591. doi:10.1046/j.1537-2995.1997.37697335152.x

Freedman, L. P., Gibson, M. C., Wisman, R. et al. (2015). The culture of cell culture practices and authentication – Results from a 2015 survey. Biotechniques 59, 189-190, 192. doi:10.2144/000114344

Freshney, R. I. (2016). Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. 7th edition. John Wiley & Sons, Inc.

Frommer, W., Archer, L., Boon, B. et al. (1993). Safe biotechnology (5). Recommendations for safe work with animal and human cell cultures concerning potential human pathogens. Appl Microbiol Biotechnol 39, 141-147. doi:10.1007/bf00228597

Geraghty, R. J., Capes-Davis, A., Davis, J. M. et al. (2014). Guidelines for the use of cell lines in biomedical research. Br J Cancer 111, 1021-1046. doi:10.1038/bjc.2014.166

Gstraunthaler, G. (2003). Alternatives to the use of fetal bovine serum: Serum-free cell culture. ALTEX 20, 275-281. doi:10.14573/altex.2003.4.257

Gilbert, D. F., Mofrad, S. A., Friedrich, O. et al. (2019). Proliferation characteristics of cells cultured under periodic versus static conditions. Cytotechnology 71, 443-452. doi:10.1007/s10616-018-0263-z

Grout, B. W. and Morris, G. J. (2009). Contaminated liquid nitrogen vapour as a risk factor in pathogen transfer. Theriogenology 71, 1079-1082. doi:10.1016/j.theriogenology.2008.12.011

Hartung, T., Balls, M., Bardouille, C. et al. (2002). Good cell culture practice. ECVAM good cell culture practice task force report 1. Altern Lab Anim 30, 407-414. doi:10.1177/026119290203000404

Hartung, T., Blaauboer, B. and Leist, M. (2009). Food for thought ... on education in alternative methods in toxicology. ALTEX 26, 255-263. doi:10.14573/altex.2009.4.255

Hawkins, K. E., Sharp, T. V. and McKay, T. R. (2013). The role of hypoxia in stem cell potency and differentiation. Regen Med 8, 771-782. doi:10.2217/rme.13.71

Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37, 614-636. doi:10.1016/0014-4827(65)90211-9

Hendriks, W. T., Warren, C. R. and Cowan, C. A. (2016). Genome editing in human pluripotent stem cells: Approaches, pitfalls, and solutions. Cell Stem Cell 18, 53-65. doi:10.1016/j.stem.2015.12.002

Hernandez, J. M. and Podbilewicz, B. (2017). The hallmarks of cell-cell fusion. Development 144, 4481-4495. doi:10.1242/dev.155523

International Stem Cell Banking Initiative (2009). Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev Rep 5, 301-314. doi:10.1007/s12015-009-9085-x

International Stem Cell Initiative, Amps, K., Andrews, P. W. et al. (2011). Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29, 1132-1144. doi:10.1038/nbt.2051

International Stem Cell Initiative (2018). Assessment of established techniques to determine developmental and malignant potential of human pluripotent stem cells. Nat Comm 9, 1925. doi:10.1038/s41467-018-04011-3

Ivanovic, Z. (2009). Hypoxia or in situ normoxia: The stem coll paradigm. J Cell Physiol 219, 271-275. doi:10.1002/jcp.21690

Jacobs, K., Zambelli, F., Mertzanidou, A. et al. (2016). Higher-density culture in human embryonic stem cells results in DNA damage and genome instability. Stem Cell Reports 6, 330-341. doi:10.1016/j.stemcr.2016.01.015

Jez, M., Rozman, P., Ivanovic, Z. et al. (2015). Concise review: The role of oxygen in hematopoietic stem cell physiology. J Cell Physiol 230, 1999-2005. doi:10.1002/jcp.24953

Keeley, T. P. and Mann, G. E. (2019). Defining physiological normoxia for improved translation of cell physiology to animal models and humans. Physiol Rev 99, 161-234. doi:10.1152/physrev.00041.2017

Kleensang, A., Vantangoli, M. M., Odwin-DaCosta, S. et al. (2016). Erratum: Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function. Sci Rep 6, 33011. doi:10.1038/srep33011

Krebs, A., Waldmann, T., Wilks, M. F. et al. (2019). Template for the description of cell-based toxicological test methods to allow evaluation and regulatory use of the data. ALTEX 36, 682-699. doi:10.14573/altex.1909271

Krejciova, Z., Alibhai, J., Zhao, C. et al. (2017). Human stem cell-derived astrocytes replicate human prions in a PRNP genotype-dependent manner. J Exp Med 214, 3481-3495. doi:10.1084/jem.20161547

Kurtz, A., Seltmann, S., Bairoch, A. et al. (2018). A standard nomenclature for referencing and authentication of pluripotent stem cells. Stem Cell Reports 10, 1-6. doi:10.1016/j.stemcr.2017.12.002

Lanbeck, P. and Paulsen, O. (1995). Cytotoxic effects of four antibiotics on endothelial cells. Pharmacol Toxicol 77, 365-370. doi:10.1111/j.1600-0773.1995.tb01043.x

Lanbeck, P. and Paulsen, O. (2001). Short-term effects of four antibiotics on DNA synthesis in endothelial cells. Pharmacol Toxicol 88, 204-208. doi:10.1034/j.1600-0773.2001.d01-105.x

Lawson, V. A., Vella, L. J., Stewart, J. D. et al. (2008). Mouse-adapted sporadic human Creutzfeldt-Jakob disease prions propagate in cell culture. Int J Biochem Cell Biol 40, 2793-2801. doi:10.1016/j.biocel.2008.05.024

Lincoln, C. K. and Gabridge, M. G. (1998). Cell culture contamination: Sources, consequences, prevention, and elimination. Methods Cell Biol 57, 49-65. doi:10.1016/S0091-679X(08)61571-X

Liu, Y., Mi, Y., Mueller, T. et al. (2019). Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat Biotechnol 37, 314-322. doi:10.1038/s41587-019-0037-y

Lloyd, G., Bowen, E. T. W., Jones, N. et al. (1984). HFRS outbreak associated with laboratory rats in UK. Lancet 1, 1175-1176.

Luong, M. X., Auerbach, J., Crook, J. M. et al. (2011). A call for standardized naming and reporting of human ESC and iPSC lines. Cell Stem Cell 8, 357-359. doi:10.1016/j.stem.2011.03.002

Mabry, K. M., Payne, S. Z. and Anseth, K. S. (2016). Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials 74, 31-41. doi:10.1016/j.biomaterials.2015.09.035

MacLeod, R. A. F. and Drexler, H. G. (2005). Cytogenetic analysis of cell lines. In C. D. Helgason and C. L. Miller (eds.), Basic Cell Culture Protocols. Methods in Molecular Biology™ 290. Humana Press. doi:10.1385/1-59259-838-2:051

Mahy, B. W., Dykewicz, C., Fisher-Hoch, S. et al. (1991). Virus zoonoses and their potential for contamination of cell cultures. Dev Biol Stand 75, 183-189.

Majmundar, A. J., Wong, W. J., Simon, M. C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40, 294-309. doi:10.1016/j.molcel.2010.09.022

Marx, U., Andersson, T. B., Bahinski, A. et al. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing using animals. ALTEX 33, 272-321. doi:10.14573/altex.1603161

Marx, U., Akabane, T., Andersson, T. B. et al. (2020). Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX 37, 365-394. doi:10.14573/altex.2001241

Masters, J. R. and Stacey, G. N. (2007). Changing medium and passaging cell lines. Nat Protoc 2, 2276-2284. doi:10.1038/nprot.2007.319

Meza-Zepeda, L. A., Noer, A., Dahl, J. A. et al. (2008). High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J Cell Mol Med 12, 553-563. doi:10.1111/j.1582-4934.2007.00146.x

Morris, G. J. (2005). The origin, ultrastructure, and microbiology of the sediment accumulating in liquid nitrogen storage vessels. Cryobiology 50, 231-238. doi:10.1016/j.cryobiol.2005.01.005

Mount, S., Kanda, P., Parent, S. et al. (2019). Physiologic expansion of human heart-derived cells enhances therapeutic repair of injured myocardium. Stem Cell Res Ther 10, 316. doi:10.1186/s13287-019-1418-3

Munafo, M. R., Nosek, B. A., Bishop, D. V. M. et al. (2017). A manifesto for reproducible science. Nat Hum Behav 1, 0021. doi:10.1038/s41562-016-0021

NCCUSL – National Conference of Commissioners on Uniform State Laws (2006). Revised Uniform Anatomical Gift Act (2006). Uniform Law Commission. https://bit.ly/3IN4lkE

Nelson Rees, W. A., Daniels, D. W. and Flandermeyer, R. R. (1981). Cross-contamination of cells in culture. Science 212, 446-452. doi:10.1126/science.6451928

Nesterenko, Y., Dolde, X., Leist, M. et al. (2020). Strategy to replace animal-derived ECM by a modular and highly defined matrix. ALTEX 37, 482-489. doi:10.14573/altex.2003181

Nims, R. W. and Harbell, J. W. (2017). Best practices for the use and evaluation of animal serum as a component of cell culture medium. In Vitro Cell Dev Biol Anim 53, 682-690. doi:10.1007/s11626-017-0184-8

OECD (2018). Guidance Document on Good In Vitro Method Practices (GIVIMP). OECD Series on Testing and Assessment, No. 286. OECD Publishing, Paris. doi:10.1787/9789264304796-en

Ogle, B., Cascalho, M., Platt, J. (2005). Biological implications of cell fusion. Nat Rev Mol Cell Biol 6, 567-575. doi:10.1038/nrm1678

O’Shea, O., Steeg, R., Chapman, C. et al. (2020). Development and implementation of large-scale quality control for the European bank for induced pluripotent stem cells. Stem Cell Res 45, 101773. doi:10.1016/j.scr.2020.101773

Ottosen, L. D. M., Hindkjaer, J., Husth, M. et al. (2006). Observations on intrauterine oxygen tension measured by fibre-optic microsensors. Reprod Biomed Online 13, 380-385. doi:10.1016/S1472-6483(10)61443-5

Pamies, D., Vicente-Salar, N., Sogorb, M. A. et al. (2013). The effect of CO2 concentration in neuroectoderm commitment of mouse embryonic stem cells. J Histotechnol 36, 11-12. doi:10.1179/2046023612Y.0000000018

Pamies, D., Bal-Price, A., Simeonov, A. et al. (2017). Good cell culture practice for stem cells and stem-cell-derived models. ALTEX 34, 95-132. doi:10.14573/altex.1607121

Pamies, D., Bal-Price, A., Chesne, C. et al. (2018). Advanced good cell culture practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX 35, 353-378. doi:10.14573/altex.1710081

Pamies, D., Leist, M., Coecke, S. et al. (2020). Good cell and tissue culture practice 2.0 (GCCP 2.0) – Draft for stakeholder discussion and call for action. ALTEX 37, 490-492. doi:10.14573/altex.2007091

Petricciani, J., Hayakawa, T., Stacey, G. et al. (2017). Scientific considerations for the regulatory evaluation of cell therapy products. Biologicals 50, 20-26. doi:10.1016/j.biologicals.2017.08.011

Pirnay, J. P., Baudoux, E., Cornu, O. et al. (2015). Access to human tissues for research and product development: From EU regulation to alarming legal developments in Belgium. EMBO Rep 16, 557-562. doi:10.15252/embr.201540070

Pistollato, F., Bremer-Hoffmann, S., Healy, L. et al. (2012). Standardization of pluripotent stem cell cultures for toxicity testing. Expert Opin Drug Metab Toxicol 8, 239-257. doi:10.1517/17425255.2012.639763

Price, P. J. (2017). Best practices for media selection for mammalian cells. In Vitro Cell Dev Biol Anim 53, 673-681. doi:10.1007/s11626-017-0186-6

Rebuzzini, P., Zuccotti, M., Redi, C. A. et al. (2016). Achilles’ heel of pluripotent stem cells: Genetic, genomic and epigenetic variations during prolonged culture. Cell Mol Life Sci 73, 2453-2466. doi:10.1007/s00018-016-2171-8

Reid, Y. A. (2017). Best practices for naming, receiving, and managing cells in culture. In Vitro Cell Dev Biol Anim 53, 761-774. doi:10.1007/s11626-017-0199-1

Russell, W. M. S. and Burch, R. L. (1959). The Principles of Humane Experimental Technique. London, UK: Methuen.

SaBTO (2014). Donation of Starting Material for Cell-Based Advanced Therapies: A SaBTO Review. Advisory Committee on the Safety of Blood Tissues and Organs. Department of Health and Social Care.

Scarfe, L., Brillant, N., Kumar, J. D. et al. (2017). Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regen Med 2, 28. doi:10.1038/s41536-017-0029-9

Scarritt, M. E., Pashos, N. C. and Bunnell, B. A. (2015). A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol 3, 43. doi:10.3389/fbioe.2015.00043

Schaeffer, W. I. (1990). Terminology associated with cell, tissue and organ-culture, molecular-biology and molecular-genetics. In Vitro Cell Dev Biol 26, 97-101. doi:10.1007/BF02624162

Schildknecht, S., Karreman, C., Poltl, D. et al. (2013). Generation of genetically-modified human differentiated cells for toxicological tests and the study of neurodegenerative diseases. ALTEX 30, 427-444. doi:10.14573/altex.2013.4.427

Scholz, D., Chernyshova, Y., Uckert, A. K. et al. (2018). Reduced Aβ secretion by human neurons under conditions of strongly increased bace activity. J Neurochem 147, 256-274. doi:10.1111/jnc.14467

Seltmann, S., Lekschas, F., Mueller, R. et al. (2016). hPSCreg – The human pluripotent stem cell registry. Nucleic Acids Res 44, D757-763. doi:10.1093/nar/gkv963

Serra, M., Brito, C., Correia, C. et al. (2012). Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30, 350-359. doi:10.1016/j.tibtech.2012.03.003

Shay, J. W. and Wright, W. E. (2000). Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1, 72-76. doi:10.1038/35036093

Shimoni, Y., Forsyth, T., Srinivasan, V. et al. (2018). Reducing Variability in Cell-Specific Productivity in Perfusion Culture: A Case Study. BioProcess International. https://bioprocessintl.com/upstream-processing/perfusion-cell-culture/reducing-variability-in-cell-specific-productivity-in-perfusion-culture-a-case-study/

Stacey, G. N. and Hartung, T. (2006). Availability, standardization and safety of human cells and tissues for drug screening and testing. In U. Marx and V. Sandig (eds.), Drug Testing In Vitro – Breakthroughs and Trends in Cell Culture Technology (231-250, Chapter 9).

Stacey, G. N. (2007). Risk assessment of cell culture procedures. In G. Stacey and J. Davis (eds.), Medicines from Animal Cell Culture (567-587, Chapter 31). Wiley Online Library. doi:10.1002/9780470723791.ch31

Stacey, G. N. (2011). Cell culture contamination. In I. Cree (ed.), Cancer Cell Culture. Methods Mol Biol 731, 79-91. doi:10.1007/978-1-61779-080-5_7

Stacey, G. N., Crook, J. M., Hei, D. et al. (2013). Banking human induced pluripotent stem cells: Lessons learned from embryonic stem cells? Cell Stem Cell 13, 385-388. doi:10.1016/j.stem.2013.09.007

Stacey, G. N., Coecke, S., Price, A. B. et al. (2016a). Ensuring the quality of stem cell-derived in vitro models for toxicity testing. Adv Exp Med Biol 856, 259-297. doi:10.1007/978-3-319-33826-2_11

Stacey, G. N., Healy., L., Man, J. et al. (2016b). Fundamental points to consider in the cryopreservation and shipment of cells for human application. In C. J. Connon (ed.), Bioprocessing for Cell Based Therapies (167-186, Chapter 6). Wiley Online Library. doi:10.1002/9781118743362.ch6

Stacey, G. N. and Hawkins, J. R. (2017). Cell lines: Applications and biosafety. In D. P. Wooley and K. B. Byers (eds.), Biological Safety, Principles and Practices (299-325, Chapter 14). 5th edition. Wiley Online Library. doi:10.1128/9781555819637.ch14

Stepanenko, A. A. and Heng, H. H. (2017). Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. Mutat Res 773, 91-103. doi:10.1016/j.mrrev.2017.05.002

Swim, H. E. and Parker, R. F. (1957). Culture characteristics of human fibroblasts propagated serially. Am J Hyg 66, 235-243. doi:10.1093/oxfordjournals.aje.a119897

Tedder, R. S., Zuckerman, M. A., Goldstone, A. H. et al. (1995). Hepatitis B transmission from contaminated cryopreservation tank. Lancet 346, 137-140. doi:10.1016/s0140-6736(95)91207-x

Tigges, J., Bielec, K., Brockerhoff, G. et al. (2021). Academic application of Good Cell Culture Practice for induced pluripotent stem cells. ALTEX 38, 595-614. doi:10.14573/altex.2101221

UK (2004). Human Tissue Act 2004. http://www.legislation.gov.uk/ukpga/2004/30/pdfs/ukpga_20040030_en.pdf

Uphoff, C. C., Denkmann, S. A., Steube, K. G. et al. (2010). Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines. J Biomed Biotechnol 2010, 904767. doi:10.1155/2010/904767

Uphoff, C. C., Pommerenke, C., Denkmann, S. A. et al. (2019). Screening human cell lines for viral infections applying RNA-Seq data analysis. PLoS One 14, e0210404. doi:10.1371/journal.pone.0210404

van der Valk, J., Bieback, K., Buta, C. et al. (2018). Fetal bovine serum (FBS): Past – Present – Future. ALTEX 35, 99-118. doi:10.14573/altex.1705101

Villa-Diaz, L. G., Ross, A. M., Lahann, J. et al. (2013). Concise review: The evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings. Stem Cells 31, 1-7. doi:10.1002/stem.1260

Volpato, V., Smith, J., Sandor, C. et al. (2018). Reproducibility of molecular phenotypes after long-term differentiation to human iPSC-derived neurons: A multi-site omics study. Stem Cell Reports 11, 897-911. doi:10.1016/j.stemcr.2018.08.013

Vracko, R., McFarland, B. H. and Pecoraro, R. E. (1983). Seeding efficiency, plating efficiency, and population doublings of human skin fibroblastlike cells: Results of replicate testing. In Vitro 19, 504-514. doi:10.1007/bf02619598

Waymouth, C. (1970). Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro 6, 109-127. doi:10.1007/bf02616113

Wenger, R. H., Kurtcuoglu, V., Scholz, C. C. et al. (2015). Frequently asked questions in hypoxia research. Hypoxia (Auckl) 3, 35-43. doi:10.2147/HP.S9219

WHO (2010). Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterisation of cell banks. WHO Press, World Health Organization TRS878, Annex 1. https://www.who.int/biologicals/Cell_Substrates_clean_version_18_April.pdf?ua=1

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. et al. (2016). The FAIR guiding principles for scientific data management and stewardship. Sci Data 15, 160018. doi:10.1038/sdata.2016.18. Erratum in: Sci Data 6, 6.

Wong, M. K., Li, E. W., Adam, M. et al. (2020). Establishment of an in vitro placental barrier model cultured under physiologically relevant oxygen levels. Mol Hum Reprod 26, 353-365. doi:10.1093/molehr/gaaa018

Xu, J., Du, Y. Y. and Deng, H. K. (2015). Direct lineage reprogramming: Strategies, mechanisms, and applications. Cell Stem Cell 16, 119-134. doi:10.1016/j.stem.2015.01.013

Zhang, D. H. and Jiang, W. (2015). From one-cell to tissue: Reprogramming, cell differentiation and tissue engineering. Bioscience 65, 468-475. doi:10.1093/biosci/biv016

Zeeberg, B., Riss, J., Kane, D. et al. (2004). Mistaken identifiers: Gene name errors can be introduced inadvertently when using Excel in bioinformatics. BMC Bioinformatics 5, 80. doi:10.1186/1471-2105-5-80

Zhang, Y., Zhang, H., Dong, X. et al. (2010). Hantavirus outbreak associated with laboratory rats in Yunnan, China. Infect Genet Evol 10, 638-644. doi:10.1016/j.meegid.2010.03.015

Ziemann, M., Eren, Y. and El-Osta, A. (2016). Gene name errors are widespread in the scientific literature. Genome Biol 17, 177. doi:10.1186/s13059-016-1044-7

Most read articles by the same author(s)

<< < 10 11 12 13 14 15 16 17 18 19 > >>