In vitro evaluation of the carcinogenic potential of perfluorinated chemicals

Main Article Content

Monica Vaccari , Stefania Serra, Andrea Ranzi, Federico Aldrovandi, Giangabriele Maffei, Maria Grazia Mascolo, Ada Mescoli, Elisa Montanari, Gelsomina Pillo, Francesca Rotondo, Ivan Scaroni, Lorenzo Vaccari, Cristina Zanzi, Tony Fletcher, Martin Paparella, Annamaria Colacci
[show affiliations]


Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the major components of long-chain per- and polyfluorinated alkyl substances (PFAS), known for their chemical stability and environmental persistence. Even if PFOA and PFOS have been phased out or are limited in use, they still represent a concern for human and environmental health. Several studies have been per­formed to highlight the toxicological behavior of these chemicals and their mode of action (MoA). Data have suggested a causal association between PFOA or PFOS exposure and carcinogenicity in humans, but the outcomes of epidemiological studies showed some inconsistency. Moreover, the hypothesized MoA based on animal studies is considered not relevant for human cancer. To improve the knowledge on PFAS toxicology and contribute to the weight of evidence for the regu­latory classification of PFAS, we used the BALB/c 3T3 cell transformation assay (CTA), an in vitro model under consideration to be included in an integrated approach to testing and assessment for non-genotoxic carcinogens (NGTxCs). PFOS and PFOA were tested at several concentrations using a validated experimental protocol. Our results demonstrate that PFOA does not induce cell transformation, whereas PFOS exposure induced a concentration-related increase of type III foci. Malignant foci formation was triggered at PFOS concentrations equal to or higher than 50 ppm and was not directly associated with cytotoxicity or proliferation induction. The divergent CTA outcomes suggest that different molecular events could be responsible for the toxicological profiles of PFOS and PFOA, which were not fully captured in our study.

Plain language summary
PFAS chemicals are known for their durability and resistance to heat, water, and oil. They are per­sistent in the environment and may pose health risks despite decreased use. This study explored PFOS and PFOA, two common PFAS chemicals, to understand their potential harm and cancer risk. To better understand how they might be harmful, we conducted a cell-based test that can resemble the carcinogenesis process in experimental animals. The test revealed PFOS, but not PFOA, can cause cancer-like changes, at levels of 50 parts per million or higher. This result suggests different PFAS chemicals affect cells differently, but we need more research to understand exactly how they work and how they might cause cancer. Understanding this could help regulate and reduce PFAS harmful effects. This research aligns with 3R principles by using cell-based tests as an alternative to animal testing, thereby promoting ethical research practices.

Article Details

How to Cite
Vaccari, M. (2024) “In vitro evaluation of the carcinogenic potential of perfluorinated chemicals”, ALTEX - Alternatives to animal experimentation, 41(3), pp. 439–456. doi: 10.14573/altex.2310281.

Albrecht, P. P., Torsell, N. E., Krishnan, P. et al. (2013). A species difference in the peroxisome proliferator-activated receptor α-dependent response to the developmental effects of perfluorooctanoic acid. Toxicol Sci 131, 568-582. doi:10.1093/toxsci/kfs318

Alden, C. L., Lynn, A., Bourdeau, A. et al. (2011). A critical review of the effectiveness of rodent pharmaceutical carcinogenesis testing in predicting for human risk. Vet Pathol 48, 772-784. doi:10.1177/0300985811400445

Alexander, B. H. and Olsen, G. W. (2007). Bladder cancer in perfluorooctanesulfonyl fluoride manufacturing workers. Ann Epidemiol 17, 471-478. doi:10.1016/j.annepidem.2007.01.036

Arrieta-Cortes, R., Farias, P., Hoyo-Vadillo, C. et al. (2017). Carcinogenic risk of emerging persistent organic pollutant perfluorooctane sulfonate (PFOS): A proposal of classification. Regul Toxicol Pharmacol 83, 66-80. doi:10.1016/j.yrtph.2016.11.021

ATSDR – Agency for Toxic Substances and Disease Registry (2021). Toxicological Profile for Perfluoroalkyls. Released May 2021, Last Updated March 2020. doi:10.15620/cdc:59198

Barry, V., Winquist, A. and Steenland, K. (2013). Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect 121, 1313-1318. doi:10.1289/ehp.1306615

Beesoon, S. and Martin, J. W. (2015). Isomer-specific binding affinity of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) to serum proteins. Environ Sci Technol 49, 5722-5731. doi:10.1021/es505399w

Biegel, L. B., Hurtt, M. E., Frame, S. R. et al. (2001). Mechanisms of extrahepatic tumor induction by peroxisome proliferators in male CD rats. Toxicol Sci 60, 44-55. doi:10.1093/toxsci/60.1.44

Baderna, D., Golbamaki, N., Maggioni, S. et al. (2013). Toxicological characterization of waste-related products using alternative methods: Three case studies. In B. Bilitewski, R. M Darbra, D. Barceló et al. (eds), Global Risk-Based Management of Chemical Additives II (171-205). The Handbook of Environmental Chemistry, Volume 23. Berlin/Heidelberg, Germany: Springer. doi:10.1007/698_2012_176

Bischel, H. N., Macmanus-Spencer, L. A., Zhang, C. et al. (2011). Strong associations of short-chain perfluoroalkyl acids with serum albumin and investigation of binding mechanisms. Environ Toxicol Chem 30, 2423-2430. doi:10.1002/etc.647

Bonefeld-Jorgensen, E. C., Long, M., Bossi, R. et al. (2011). Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: A case control study. Environ Health 10, 88. doi:10.1186/1476-069X-10-88

Butenhoff, J. L., Chang, S. C., Olsen, G. W. et al. (2012a). Chronic dietary toxicity and carcinogenicity study with potassium perfluorooctanesulfonate in Sprague Dawley rats. Toxicology 293, 1-15. doi:10.1016/j.tox.2012.01.003

Butenhoff, J. L., Kennedy, G. L., Jr., Chang, S. C. et al. (2012b). Chronic dietary toxicity and carcinogenicity study with ammonium perfluorooctanoate in Sprague-Dawley rats. Toxicology 298, 1-13. doi:10.1016/j.tox.2012.04.001

Butenhoff, J. L., Pieterman, E., Ehresman, D. J. et al. (2012c). Distribution of perfluorooctanesulfonate and perfluorooctanoate into human plasma lipoprotein fractions. Toxicol Lett 210, 360-365. doi:10.1016/j.toxlet.2012.02.013

Callegaro, G., Stefanini, F. M., Colacci, A. et al. (2015). An improved classification of foci for carcinogenicity testing by statistical descriptors. Toxicol In Vitro 29, 1839-1850. doi:10.1016/j.tiv.2015.07.013

Caverly Rae, J. M., Frame, S. R., Kennedy, G. L. et al. (2014). Pathology review of proliferative lesions of the exocrine pancreas in two chronic feeding studies in rats with ammonium perfluorooctanoate. Toxicol Rep 1, 85-91. doi:10.1016/j.toxrep.2014.04.005

Chang, E. T., Adami, H. O., Boffetta, P. et al. (2014). A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and cancer risk in humans. Crit Rev Toxicol 44, Suppl 1, 1-81. doi:10.3109/10408444.2014.905767

Colacci, A., Mascolo, M. G., Perdichizzi, S. et al. (2011). Different sensitivity of BALB/c 3T3 cell clones in the response to carcinogens. Toxicol In Vitro 25, 1183-1190. doi:10.1016/j.tiv.2011.05.032

Colacci, A., Corvi, R., Ohmori, K. et al. (2023). The cell transformation assay: A historical assessment of current knowledge of applications in an integrated approach to testing and assessment for non-genotoxic carcinogens. Int J Mol Sci 24, 5659. doi:10.3390/ijms24065659

Corton, J. C., Peters, J. M. and Klaunig, J. E. (2018). The PPARα-dependent rodent liver tumor response is not relevant to humans: Addressing misconceptions. Arch Toxicol 92, 83-119. doi:10.1007/s00204-017-2094-7

Crebelli, R., Caiola, S., Conti, L. et al. (2019). Can sustained exposure to pfas trigger a genotoxic response? A comprehensive genotoxicity assessment in mice after subacute oral administration of PFOA and PFBA. Regul Toxicol Pharmacol 106, 169-177. doi:10.1016/j.yrtph.2019.05.005

Dean, J. L., Zhao, Q. J., Lambert, J. C. et al. (2017). Editor’s highlight: Application of gene set enrichment analysis for identification of chemically induced, biologically relevant transcriptomic networks and potential utilization in human health risk assessment. Toxicol Sci 157, 85-99. doi:10.1093/toxsci/kfx021

ECHA (2023). Restriction Proposal on Per- and Polyfluoroalkyl Substances (PFASs). (accessed 30.03.2024)

EFSA (2018). Panel on contaminants in the food chain (CONTAM). Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 16, e05194. doi:10.2903/j.efsa.2018.5194

EPA (2016a). Health Effects Support Document for Perfluorooctanoic acid (PFOA).

EPA (2016b). Health Effects Support Document for Perfluorooctane Sulfonate (PFOS). (accessed 30.03.2024)

EPA (2019). EPA’s Per- and Polyfluoroalkyl Substances (PFAS) Action Plan. EPA 823R18004.

Eriksen, K. T., Sorensen, M., McLaughlin, J. K. et al. (2009). Perfluorooctanoate and perfluorooctanesulfonate plasma levels and risk of cancer in the general Danish population. J Natl Cancer Inst 101, 605-609. doi:10.1093/jnci/djp041

EU (2006). Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC.

EU (2008). Council Regulation (EC) No 440/2008 of 30 May 2008 laying down test methods pursuant to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

EU (2022a). Commission Recommendation (EU) 2022/1431 of 24 August 2022 on the monitoring of perfluoroalkyl substances in food. OJ L 221, 105-109.

EU (2022b). Commission Regulation (EU) 2022/2388 of 7 December 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of perfluoroalkyl substances in certain foodstuffs (text with EEA relevance). OJ L 316, 38-41.

EU Chemical Strategy (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Chemicals Strategy for Sustainability Towards a Toxic-Free Environment.

Frisbee, S. J., Brooks, A. P., Jr., Maher, A. et al. (2009). The C8 health project: Design, methods, and participants. Environ Health Perspect 117, 1873-1882. doi:10.1289/ehp.0800379

Frisbee, S. J., Shankar, A., Knox, S. S. et al. (2010). Perfluorooctanoic acid, perfluorooctanesulfonate, and serum lipids in children and adolescents: Results from the C8 health project. Arch Pediatr Adolesc Med 164, 860-869. doi:10.1001/archpediatrics.2010.163

Gimenez-Bastida, J. A., Surma, M. and Zielinski, H. (2015). In vitro evaluation of the cytotoxicity and modulation of mechanisms associated with inflammation induced by perfluorooctanesulfonate and perfluorooctanoic acid in human colon myofibroblasts CCD-18Co. Toxicol In Vitro 29, 1683-1691. doi:10.1016/j.tiv.2015.07.001

Girardi, P. and Merler, E. (2019). A mortality study on male subjects exposed to polyfluoroalkyl acids with high internal dose of perfluorooctanoic acid. Environ Res 179, 108743. doi:10.1016/j.envres.2019.108743

Gottmann, E., Kramer, S., Pfahringer, B. et al. (2001). Data quality in predictive toxicology: Reproducibility of rodent carcinogenicity experiments. Environ Health Perspect 109, 509-514. doi:10.1289/ehp.01109509

Grice, M. M., Alexander, B. H., Hoffbeck, R. et al. (2007). Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers. J Occup Environ Med 49, 722-729. doi:10.1097/jom.0b013e3180582043

Hardell, E., Karrman, A., van Bavel, B. et al. (2014). Case-control study on perfluorinated alkyl acids (PFAAs) and the risk of prostate cancer. Environ Int 63, 35-39. doi:10.1016/j.envint.2013.10.005

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2017). Some Chemicals Used as Solvents and in Polymer Manufacture. Lyon, France: International Agency for Research on Cancer.

Ingelido, A. M., Marra, V., Abballe, A. et al. (2010). Perfluorooctanesulfonate and perfluorooctanoic acid exposures of the Italian general population. Chemosphere 80, 1125-1130. doi:10.1016/j.chemosphere.2010.06.025

Innes, K. E., Wimsatt, J. H., Frisbee, S. et al. (2014). Inverse association of colorectal cancer prevalence to serum levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in a large Appalachian population. BMC Cancer 14, 45. doi:10.1186/1471-2407-14-45

Jacobs, M. N., Colacci, A., Louekari, K. et al. (2016). International regulatory needs for development of an IATA for non-genotoxic carcinogenic chemical substances. ALTEX 33, 359-392. doi:10.14573/altex.1601201

Jacobs, M. N., Colacci, A., Corvi, R. et al. (2020). Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch Toxicol 94, 2899-2923. doi:10.1007/s00204-020-02784-5

Jacobs, M. N., Bult, J. M., Cavanagh, K. et al. (2023). OECD workshop consensus report: Ethical considerations with respect to human derived products, specifically human serum, in OECD test guidelines. Front Toxicol 5, 1140698. doi:10.3389/ftox.2023.1140698

Jacquet, N., Maire, M. A., Rast, C. et al. (2011). Perfluorooctanoic acid (PFOA) acts as a tumor promoter on Syrian hamster embryo (SHE) cells. Environ Sci Pollut Res Int 19, 2537-2549. doi:10.1007/s11356-012-0968-z

Jacquet, N., Maire, M. A., Landkocz, Y. et al. (2012). Carcinogenic potency of perfluorooctane sulfonate (PFOS) on Syrian hamster embryo (SHE) cells. Arch Toxicol 86, 305-314. doi:10.1007/s00204-011-0752-8

Judson, R. S., Houck, K. A., Kavlock, R. J. et al. (2010). In vitro screening of environmental chemicals for targeted testing prioritization: The ToxCast project. Environ Health Perspect 118, 485-492. doi:10.1289/ehp.0901392

Kaiser, A. M., Aro, R., Karrman, A. et al. (2021). Comparison of extraction methods for per- and polyfluoroalkyl substances (PFAS) in human serum and placenta samples-insights into extractable organic fluorine (EOF). Anal Bioanal Chem 413, 865-876. doi:10.1007/s00216-020-03041-5

Kato, K., Kalathil, A. A., Patel, A. M. et al. (2018). Per- and polyfluoroalkyl substances and fluorinated alternatives in urine and serum by on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. Chemosphere 209, 338-345. doi:10.1016/j.chemosphere.2018.06.085

Kersten, S. and Stienstra, R. (2017). The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 136, 75-84. doi:10.1016/j.biochi.2016.12.019

Knutsen, H. K., Alexander, J., Barregård, L. et al. (2018). EFSA panel on contaminants in the food chain: Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 16, e05194. doi:10.2903/j.efsa.2018.5194

Lalloyer, F. and Staels, B. (2010). Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol 30, 894-899. doi:10.1161/atvbaha.108.179689

Lang, S., Loibl, M. and Herrmann, M. (2018). Platelet-rich plasma in tissue engineering: Hype and hope. Eur Surg Res 59, 265-275. doi:10.1159/000492415

Madia, F., Worth, A., Whelan, M. et al. (2019). Carcinogenicity assessment: Addressing the challenges of cancer and chemicals in the environment. Environ Int 128, 417-429. doi:10.1016/j.envint.2019.04.067

Mancini, F. R., Cano-Sancho, G., Gambaretti, J. et al. (2020). Perfluorinated alkylated substances serum concentration and breast cancer risk: Evidence from a nested case-control study in the French E3N cohort. Int J Cancer 146, 917-928. doi:10.1002/ijc.32357

Mascolo, M. G., Perdichizzi, S., Rotondo, F. et al. (2010). BALB/c 3T3 cell transformation assay for the prediction of carcinogenic potential of chemicals and environmental mixtures. Toxicol In Vitro 24, 1292-1300. doi:10.1016/j.tiv.2010.03.003

Mascolo, M. G., Perdichizzi, S., Vaccari, M. et al. (2018). The transformics assay: First steps for the development of an integrated approach to investigate the malignant cell transformation in vitro. Carcinogenesis 39, 955-967. doi:10.1093/carcin/bgy037

NTP – National Toxicology Program (2023). NTP Technical Report on the Toxicology and Carcinogenesis Studies of Perfluorooctanoic Acid (CASRN 335-67-1) Administered in Feed to Sprague Dawley (Hsd:Sprague Dawley SD) Rats (Revised). Technical Report 598. doi:10.22427/ntp-tr-598

OECD – Organization for Economic Co-operation and Development (2015). Guidance Document on the In Vitro Syrian Hamster Embryo (SHE) Cell Transformation Assay. OECD Series on Testing and Assessment, No. 204.

OECD (2017). Guidance Document on the In Vitro Bhas 42 Cell Transformation Assay (Bhas 42 CTA). OECD Series on Testing and Assessment, No. 231.

OECD (2018a). Test No. 451: Carcinogenicity Studies. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. doi:10.1787/9789264071186-en

OECD (2018b). Test No 453: Combined Chronic Toxicity/Carcinogenicity Studies. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. doi:10.1787/9789264071223-en

Paparella, M., Colacci, A. and Jacobs, M. N. (2017). Uncertainties of testing methods: What do we (want to) know about carcinogenicity? ALTEX 34, 235-252. doi:10.14573/altex.1608281

Pillo, G., Mascolo, M. G., Zanzi, C. et al. (2022). Mechanistic interrogation of cell transformation in vitro: The transformics assay as an exemplar of oncotransformation. Int J Mol Sci 23, 7603. doi:10.3390/ijms23147603

Pitter, G., Da Re, F., Canova, C. et al. (2020). Serum levels of perfluoroalkyl substances (PFAS) in adolescents and young adults exposed to contaminated drinking water in the Veneto region, Italy: A cross-sectional study based on a health surveillance program. Environ Health Perspect 128, 27007. doi:10.1289/ehp5337

Raleigh, K. K., Alexander, B. H., Olsen, G. W. et al. (2014). Mortality and cancer incidence in ammonium perfluorooctanoate production workers. Occup Environ Med 71, 500-506. doi:10.1136/oemed-2014-102109

Ren, H., Vallanat, B., Nelson, D. M. et al. (2009). Evidence for the involvement of xenobiotic-responsive nuclear receptors in transcriptional effects upon perfluoroalkyl acid exposure in diverse species. Reprod Toxicol 27, 266-277. doi:10.1016/j.reprotox.2008.12.011

Ren, X. M., Zhang, Y. F., Guo, L. H. et al. (2015). Structure-activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor. Arch Toxicol 89, 233-242. doi:10.1007/s00204-014-1258-y

Rosen, M. B., Lee, J. S., Ren, H. et al. (2008). Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: Evidence for the involvement of nuclear receptors PPAR alpha and CAR. Toxicol Sci 103, 46-56. doi:10.1093/toxsci/kfn025

Rosen, M. B., Das, K. P., Rooney, J. et al. (2017). PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology 387, 95-107. doi:10.1016/j.tox.2017.05.013

Rowan-Carroll, A., Reardon, A., Leingartner, K. et al. (2021). High-throughput transcriptomic analysis of human primary hepatocyte spheroids exposed to per- and polyfluoroalkyl substances as a platform for relative potency characterization. Toxicol Sci 181, 199-214. doi:10.1093/toxsci/kfab039

Sakai, A. (2007). BALB/c 3T3 cell transformation assays for the assessment of chemical carcinogenicity. AATEX 14, 367-373.

Sanchez Garcia, D., Sjodin, M., Hellstrandh, M. et al. (2018). Cellular accumulation and lipid binding of perfluorinated alkylated substances (PFASs) – A comparison with lysosomotropic drugs. Chem Biol Interact 281, 1-10. doi:10.1016/j.cbi.2017.12.021

Sasaki, K., Bohnenberger, S., Hayashi, K. et al. (2012a). Recommended protocol for the BALB/c 3T3 cell transformation assay. Mutat Res 744, 30-35. doi:10.1016/j.mrgentox.2011.12.014

Sasaki, K., Bohnenberger, S., Hayashi, K. et al. (2012b). Photo catalogue for the classification of foci in the BALB/c 3T3 cell transformation assay. Mutat Res 744, 42-53. doi:10.1016/j.mrgentox.2012.01.009

Schrenk, D., Bignami, M., Bodin, L. et al. (2020). EFSA panel on contaminants in the food chain: Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 18, e06223. doi:10.2903/j.efsa.2020.622

Serra, S., Vaccari, M., Mascolo, M. G. et al. (2019). Hazard assessment of air pollutants: The transforming ability of complex pollutant mixtures in the Bhas 42 cell model. ALTEX 36, 623-633. doi:10.14573/altex.1812173

Shearer, J. J., Callahan, C. L., Calafat, A. M. et al. (2021). Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma. J Natl Cancer Inst 113, 580-587. doi:10.1093/jnci/djaa143

Sonich-Mullin, C., Fielder, R., Wiltse, J. et al. (2001). IPCS conceptual framework for evaluating a mode of action for chemical carcinogenesis. Regul Toxicol Pharmacol 34, 146-152. doi:10.1006/rtph.2001.1493

Sonnenberg, N. K., Ojewole, A. E., Ojewole, C. O. et al. (2023). Trends in serum per- and polyfluoroalkyl substance (PFAS) concentrations in teenagers and adults, 1999-2018 NHANES. Int J Environ Res Public Health 20, 6984. doi:10.3390/ijerph20216984

Steenland, K., Fletcher, T. and Savitz, D. A. (2010). Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ Health Perspect 118, 1100-1108. doi:10.1289/ehp.0901827

Steenland, K. and Woskie, S. (2012). Cohort mortality study of workers exposed to perfluorooctanoic acid. Am J Epidemiol 176, 909-917. doi:10.1093/aje/kws171

Steenland, K., Fletcher, T., Stein, C. R. et al. (2020). Review: Evolution of evidence on PFOA and health following the assessments of the C8 science panel. Environ Int 145, 106125. doi:10.1016/j.envint.2020.106125

Steenland, K. and Winquist, A. (2021). PFAS and cancer, a scoping review of the epidemiologic evidence. Environ Res 194, 110690. doi:10.1016/j.envres.2020.110690

Stockholm Convention (2009). The new pops under the Stockholm Convention, SC-4/17: Listing of perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride.

Stockholm Convention (2019). The new pops under the Stockholm Convention, SC-9/12: Listing of perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds.

Subbiahanadar Chelladurai, K., Selvan Christyraj, J. D., Rajagopalan, K. et al. (2021). Alternative to FBS in animal cell culture – An overview and future perspective. Heliyon 7, e07686. doi:10.1016/j.heliyon.2021.e07686

Temkin, A. M., Hocevar, B. A., Andrews, D. Q. et al. (2020). Application of the key characteristics of carcinogens to per and polyfluoroalkyl substances. Int J Environ Res Public Health 17, 1668. doi:10.3390/ijerph17051668

Tsai, M. S., Chang, S. H., Kuo, W. H. et al. (2020). A case-control study of perfluoroalkyl substances and the risk of breast cancer in Taiwanese women. Environ Int 142, 105850. doi:10.1016/j.envint.2020.105850

Tsuda, S. (2016). Differential toxicity between perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). J Toxicol Sci 41, SP27-SP36. doi:10.2131/jts.41.sp27

Vanden Heuvel, J. P., Thompson, J. T., Frame, S. R. et al. (2006). Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: A comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 92, 476-489. doi:10.1093/toxsci/kfl014

Verma, A., Verma, M. and Singh, A. (2020). Animal tissue culture principles and applications. Anim Biotechnol 2020, 269-293. doi:10.1016/b978-0-12-811710-1.00012-4

Vieira, V., Hoffman, K. and Fletcher, T. (2013). Assessing the spatial distribution of perfluorooctanoic acid exposure via public drinking water pipes using geographic information systems. Environ Health Toxicol 28, e2013009. doi:10.5620/eht.2013.28.e2013009

Wan, H. T., Zhao, Y. G., Wei, X. et al. (2012). PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport. Biochim Biophys Acta 1820, 1092-1101. doi:10.1016/j.bbagen.2012.03.010

Wang, J., Hallinger, D. R., Murr, A. S. et al. (2019). High-throughput screening and chemotype-enrichment analysis of ToxCast phase II chemicals evaluated for human sodium-iodide symporter (NIS) inhibition. Environ Int 126, 377-386. doi:10.1016/j.envint.2019.02.024

Wang, Y., Zhang, H., Kang, Y. et al. (2016). Effects of perfluorooctane sulfonate on the conformation and activity of bovine serum albumin. J Photochem Photobiol B 159, 66-73. doi:10.1016/j.jphotobiol.2016.03.024

Woutersen, M., Beekman, M., Pronk, M. et al. (2018). Does REACH provide sufficient information to regulate mutagenic and carcinogenic substances. Hum Ecol Risk Assess 25, 1996-2016. doi:10.1080/10807039.2018.1480351

Yang, Q., Nagano, T., Shah, Y. et al. (2008). The PPARα-humanized mouse: A model to investigate species differences in liver toxicity mediated by PPARα. Toxicol Sci 101, 132-139. doi:10.1093/toxsci/kfm206

Zahm, S., Bonde, J. P., Chiu, W. A. et al. (2024). Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid. Lancet Oncol 25, 16-17. doi:10.1016/S1470-2045(23)00622-8

Zeng, Z., Song, B., Xiao, R. et al. (2019). Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. Environ Int 126, 598-610. doi:10.1016/j.envint.2019.03.002

Zhang, L., Ren, X. M., Wan, B. et al. (2014). Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ. Toxicol Appl Pharmacol 279, 275-283. doi:10.1016/j.taap.2014.06.020

Zhang, Y. M., Dong, X. Y., Fan, L. J. et al. (2017). Poly- and perfluorinated compounds activate human pregnane X receptor. Toxicology 380, 23-29. doi:10.1016/j.tox.2017.01.012

Most read articles by the same author(s)

1 2 > >>