The importance of variations in in vitro dosimetry to support risk assessment of inhaled toxicants

Main Article Content

Yvonne C. M. Staal , Liesbeth Geraets, Barbara Rothen-Rutishauser, Martin J. D. Clift, Hedwig Braakhuis, Anne S. Kienhuis, Peter M. J. Bos
[show affiliations]


In vitro methods provide a key opportunity to model human-relevant exposure scenarios for hazard identification of inhaled toxicants. Compared to in vivo tests, in vitro methods have the advantage of assessing effects of inhaled toxicants caused by differences in dosimetry, e.g., variations in con­centration (exposure intensity), exposure duration, and exposure frequency, in an easier way. Variations in dosimetry can be used to obtain information on adverse effects in human-relevant exposure scenarios that can be used for risk assessment. Based on the published literature of exposure approaches using air-liquid interface models of the respiratory tract, supplemented with additional experimental data from the EU H2020 project “PATROLS” and research funded by the Dutch Ministry of Agriculture, Nature and Food Quality, the advantages and disadvantages of dif­ferent exposure methods and considerations to design an experimental setup are summarized and discussed. As the cell models used are models for the respiratory epithelium, our focus is on the local effects in the airways. In conclusion, in order to generate data from in vitro methods for risk assessment of inhaled toxicants it is recommended that (1) it is considered what information really is needed for hazard or risk assessment; (2) the exposure system that is most suitable for the chemical to be assessed is chosen; (3) a deposited dose that mimics deposition in the human respiratory tract is used, and (4) the post-exposure sampling methodology should be carefully considered and relevant to the testing strategy used.

Plain language summary
The impact of airborne pollutants on human health is determined by what pollutant it is, how much we breathe in, for how long and how often. Testing in animals is cumbersome and results may not reflect human health impacts. Advanced cell models of the human lung allow prediction of the health impact of many different exposure scenarios. Here, we compare different models and exposure methods and provide criteria that may assist in designing experiments, interpreting the results, and thus assessing the risks posed by airborne pollutants. We recommend (1) determining what infor­mation is needed to plan the experiment, (2) choosing an exposure method that is suitable for the pollutant of interest, (3) determining the amount of pollutant that interacts with the human lung, to relate this to realistic deposition in the lung, and (4) considering the time between the exposure and measurement of the effect.

Article Details

How to Cite
Staal, Y. C. M. (2024) “The importance of variations in in vitro dosimetry to support risk assessment of inhaled toxicants”, ALTEX - Alternatives to animal experimentation, 41(1), pp. 91–103. doi: 10.14573/altex.2305311.

Ahookhosh, K., Pourmehran, O., Aminfar, H. et al. (2020). Development of human respiratory airway models: A review. Eur J Pharm Sci 145, 105233. doi:10.1016/j.ejps.2020.105233

Anthérieu, S., Garat, A., Beauval, N. et al. (2017). Comparison of cellular and transcriptomic effects between electronic cigarette vapor and cigarette smoke in human bronchial epithelial cells. Toxicol In Vitro 45, 417-425. doi:10.1016/j.tiv.2016.12.015

Atherley, G. (1985). A critical review of time-weighted average as an index of exposure and dose, and of its key elements. Am Ind Hyg Assoc J 46, 481-487. doi:10.1080/15298668591395210

Baiocco, G., George, I., Garcia-Argote, S. et al. (2021). A 3D in vitro model of the human airway epithelium exposed to tritiated water: Dosimetric estimate and cytotoxic effects. Radiation Res 195, 265-274. doi:10.1667/rade-20-00208.1

Bannuscher, A., Schmid, O., Drasler, B. et al. (2022). An inter-laboratory effort to harmonize the cell-delivered in vitro dose of aerosolized materials. NanoImpact 28, 100439. doi:10.1016/j.impact.2022.100439

Barosova, H., Karakocak, B. B., Septiadi, D. et al. (2020a). An in vitro lung system to assess the proinflammatory hazard of carbon nanotube aerosols. Int J Mol Sci 21, 5335. doi:10.3390/ijms21155335

Barosova, H., Maione, A. G., Septiadi, D. et al. (2020b). Use of epialveolar lung model to predict fibrotic potential of multiwalled carbon nanotubes. ACS Nano 14, 3941-3956. doi:10.1021/acsnano.9b06860

Belkebir, E., Rousselle, C., Duboudin, C. et al. (2011). Haber’s rule duration adjustments should not be used systematically for risk assessment in public health decision-making. Toxicol Lett 204, 148-155. doi:10.1016/j.toxlet.2011.04.026

Bessa, M. J., Brandão, F., Fokkens, P. et al. (2021). Toxicity assessment of industrial engineered and airborne process-generated nanoparticles in a 3D human airway epithelial in vitro model. Nanotoxicology 15, 542-557. doi:10.1080/17435390.2021.1897698

Binder, S., Cao, X., Bauer, S. et al. (2021). In vitro genotoxicity of dibutyl phthalate on A549 lung cells at air-liquid interface in exposure concentrations relevant at workplaces. Environ Mol Mutagen 62, 490-501. doi:10.1002/em.22464

Bishop, E., Haswell, L., Adamson, J. et al. (2019). An approach to testing undiluted e-cigarette aerosol in vitro using 3D reconstituted human airway epithelium. Toxicol In Vitro 54, 391-401. doi:10.1016/j.tiv.2018.01.010

Blank, F., Rothen-Rutishauser, B. M., Schurch, S. et al. (2006). An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J Aerosol Med 19, 392-405. doi:10.1089/jam.2006.19.392

Bos, P. M. J., Geraets, L., De Wit-Bos, L. et al. (2020). Towards an animal-free human health assessment: Starting from the current regulatory needs. ALTEX 37, 395-408. doi:10.14573/altex.1912041

Bos, P. M. J., Soeteman-Hernández, L. G. and Talhout, R. (2021). Risk assessment of components in tobacco smoke and e-cigarette aerosols: A pragmatic choice of dose metrics. Inhal Toxicol 33, 81-95. doi:10.1080/08958378.2021.1909678

Chary, A., Serchi, T., Moschini, E. et al. (2019). An in vitro coculture system for the detection of sensitization following aerosol exposure. ALTEX 36, 403-418. doi:10.14573/altex.1901241

Chortarea, S., Clift, M. J. D., Vanhecke, D. et al. (2015). Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology 9, 983-993. doi:10.3109/17435390.2014.993344

Corley, R. A., Kuprat, A. P., Suffield, S. R. et al. (2021). New approach methodology for assessing inhalation risks of a contact respiratory cytotoxicant: Computational fluid dynamics-based aerosol dosimetry modeling for cross-species and in vitro comparisons. Toxicol Sci 182, 243-259. doi:10.1093/toxsci/kfab062

Di Ianni, E., Erdem, J. S., Møller, P. et al. (2021). In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT. Part Fibre Toxicol 18, 25. doi:10.1186/s12989-021-00413-2

Dwivedi, A. M., Upadhyay, S., Johanson, G. et al. (2018). Inflammatory effects of acrolein, crotonaldehyde and hexanal vapors on human primary bronchial epithelial cells cultured at air-liquid interface. Toxicol In Vitro 46, 219-228. doi:10.1016/j.tiv.2017.09.016

ECHA – European Chemical Agency (2012). Guidance on the Information Requirements and Chemical Safety Assessment. Chapter R.8: Characterisation of dose [concentration]-response for human health. Version 2.1

ECHA (2016). New Approach Methodologies in Regulatory Science. Proceedings of a scientific workshop. Helsinki, 19-20 April 2016. doi:10.2823/543644

Endes, C., Schmid, O., Kinnear, C. et al. (2014). An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Part Fibre Toxicol 11, 40. doi:10.1186/s12989-014-0040-x

Escher, S. E., Partosch, F., Konzok, S. et al. (2022). Development of a roadmap for action on new approach methodologies in risk assessment. EFSA Support Publ 19, 7341E. doi:10.2903/sp.efsa.2022.EN-7341

Fizeşan, I., Cambier, S., Moschini, E. et al. (2019). In vitro exposure of a 3D-tetraculture representative for the alveolar barrier at the air-liquid interface to silver particles and nanowires. Part Fibre Toxicol 16, 14.doi:10.1186/s12989-019-0297-1

Forbes, B. and Ehrhardt, C. (2005). Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 60, 193-205. doi:10.1016/j.ejpb.2005.02.010

Friesen, A., Fritsch-Decker, S., Hufnagel, M. et al. (2022a). Comparing α-quartz-induced cytotoxicity and interleukin-8 release in pulmonary mono-and co-cultures exposed under submerged and air-liquid interface conditions. Int J Mol Sci 23, 6412. doi:10.3390/ijms23126412

Friesen, A., Fritsch-Decker, S., Hufnagel, M. et al. (2022b). Gene expression profiling of mono- and co-culture models of the respiratory tract exposed to crystalline quartz under submerged and air-liquid interface conditions. Int J Mol Sci 23, 7773. doi:10.3390/ijms23147773

Halappanavar, S., van den Brule, S., Nymark, P. et al. (2020). Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Part Fibre Toxicol 17, 16. doi:10.1186/s12989-020-00344-4

Halappanavar, S., Nymark, P., Krug, H. F. et al. (2021). Non-animal strategies for toxicity assessment of nanoscale materials: Role of adverse outcome pathways in the selection of endpoints. Small 17, e2007628. doi:10.1002/smll.202007628

He, R. W., Gerlofs-Nijland, M. E., Boere, J. et al. (2020). Comparative toxicity of ultrafine particles around a major airport in human bronchial epithelial (Calu-3) cell model at the air-liquid interface. Toxicol In Vitro 68, 104950. doi:10.1016/j.tiv.2020.104950

He, R. W., Houtzager, M. M. G., Jongeneel, W. P. et al. (2021). In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system. Environ Int 156, 106718. doi:10.1016/j.envint.2021.106718

Hiemstra, P. S., Grootaers, G., van der Does, A. M. et al. (2018). Human lung epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions. Toxicol In Vitro 47, 137-146. doi:10.1016/j.tiv.2017.11.005

Hu, Y., Sheng, Y., Ji, X. et al. (2020). Comparative anti-inflammatory effect of curcumin at air-liquid interface and submerged conditions using lipopolysaccharide stimulated human lung epithelial A549 cells. Pulmon Pharmacol Ther 63, 101939. doi:10.1016/j.pupt.2020.101939

Ishikawa, S., Matsumura, K., Kitamura, N. et al. (2018). Application of a direct aerosol exposure system for the assessment of biological effects of cigarette smoke and novel tobacco product vapor on human bronchial epithelial cultures. Regul Toxicol Pharmacol 96, 85-93. doi:10.1016/j.yrtph.2018.05.004

Jang, S. Y., Park, M. K., Im, J. M. et al. (2021). In vitro acute inhalation toxicity for TiO2 (GST) using 3D human tissue model (EpiAirway™). Environ Health Toxicol 36, e2021015-0. doi:10.5620/eaht.2021015

Jeannet, N., Fierz, M., Schneider, S. et al. (2016). Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells. Nanotoxicology 10, 279-291. doi:10.3109/17435390.2015.1049233

Jeong, M. H., Kim, H. R., Bang, I. J. et al. (2019). In vitro model for predicting acute inhalation toxicity by using a Calu-3 epithelium cytotoxicity assay. J Pharmacol Toxicol Methods 98, 106576. doi:10.1016/j.vascn.2019.04.002

Ji, J., Ganguly, K., Mihai, X. et al. (2019). Exposure of normal and chronic bronchitis-like mucosa models to aerosolized carbon nanoparticles: Comparison of pro-inflammatory oxidative stress and tissue injury/repair responses. Nanotoxicology 13, 1362-1379. doi:10.1080/17435390.2019.1655600

Jing, X., Park, J. H., Peters, T. M. et al. (2015). Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment. Toxicol In Vitro 29, 502-511. doi:10.1016/j.tiv.2014.12.023

Jonsdottir, H. R., Delaval, M., Leni, Z. et al. (2019). Non-volatile particle emissions from aircraft turbine engines at ground-idle induce oxidative stress in bronchial cells. Comm Biol 2, 90. doi:10.1038/s42003-019-0332-7

Kim, H. R., Lee, K., Park, C. W. et al. (2016). Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses. Arch Toxicol 90, 617-632. doi:10.1007/s00204-015-1486-9

Klein, S. G., Cambier, S., Hennen, J. et al. (2017). Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter. Part Fibre Toxicol 14, 7. doi:10.1186/s12989-017-0186-4

Kooter, I. M., Gröllers-Mulderij, M., Duistermaat, E. et al. (2017). Factors of concern in a human 3D cellular airway model exposed to aerosols of nanoparticles. Toxicol In Vitro 44, 339-348. doi:10.1016/j.tiv.2017.07.006

Kuempel, E. D., Sweeney, L. M., Morris, J. B. et al. (2015). Advances in inhalation dosimetry models and methods for occupational risk assessment and exposure limit derivation. J Occup Environ Hyg 12, Suppl 1, S18-40. doi:10.1080/15459624.2015.1060328

Ma, S., Xian, M., Wang, Y. et al. (2021). Budesonide repairs decreased barrier integrity of eosinophilic nasal polyp epithelial cells caused by PM2.5. Clin Translat Allergy 11, e12019. doi:10.1002/clt2.12029

Ma-Hock, L., Sauer, U. G., Ruggiero, E. et al. (2021). The use of nanomaterial in vivo organ burden data for in vitro dose setting. Small 17, e2005725. doi:10.1002/smll.202005725

Mathis, C., Gebel, S., Poussin, C. et al. (2015). A systems biology approach reveals the dose- and time-dependent effect of primary human airway epithelium tissue culture after exposure to cigarette smoke in vitro. Bioinform Biol Insights 9, 19-35. doi:10.4137/bbi.s19908

McGee Hargrove, M., Parr-Dobrzanski, B., Li, L. et al. (2021). Use of the MucilAir airway assay, a new approach methodology, for evaluating the safety and inhalation risk of agrochemicals. Appl In Vitro Toxicol 7, 50-60. doi:10.1089/aivt.2021.0005

Méausoone, C., El Khawaja, R., Tremolet, G. et al. (2019). In vitro toxicological evaluation of emissions from catalytic oxidation removal of industrial VOCs by air/liquid interface (ALI) exposure system in repeated mode. Toxicol In Vitro 58, 110-117. doi:10.1016/j.tiv.2019.03.030

Méausoone, C., Landkocz, Y., Cazier, F. et al. (2021). Toxicological responses of BEAS-2B cells to repeated exposures to benzene, toluene, m-xylene, and mesitylene using air-liquid interface method. J Appl Toxicol 41, 1262-1274. doi:10.1002/jat.4113

Medina-Reyes, E. I., Delgado-Buenrostro, N. L., Leseman, D. L. et al. (2020). Differences in cytotoxicity of lung epithelial cells exposed to titanium dioxide nanofibers and nanoparticles: Comparison of air-liquid interface and submerged cell cultures. Toxicol In Vitro 65, 104798. doi:10.1016/j.tiv.2020.104798

Meldrum, K., Evans, S. J., Vogel, U. et al. (2022). The influence of exposure approaches to in vitro lung epithelial barrier models to assess engineered nanomaterial hazard. Nanotoxicology 16, 114-134. doi:10.1080/17435390.2022.2051627

Miller, A. J. and Spence, J. R. (2017). In vitro models to study human lung development, disease and homeostasis. Physiology 32, 246-260. doi:10.1152/physiol.00041.2016

Moreau, M., Fisher, J., Andersen, M. E. et al. (2022). NAM-based prediction of point-of-contact toxicity in the lung: A case example with 1,3-dichloropropene. Toxicology 481, 153340. doi:10.1016/j.tox.2022.153340

Nair, V., Tran, M., Behar, R. Z. et al. (2020). Menthol in electronic cigarettes: A contributor to respiratory disease? Toxicol Appl Pharmacol 407, 115238. doi:10.1016/j.taap.2020.115238

Neilson, L., Mankus, C., Thorne, D. et al. (2015). Development of an in vitro cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol. Toxicol In Vitro 29, 1952-1962. doi:10.1016/j.tiv.2015.05.018

Nichols, J. E., Niles, J. A., Vega, S. P. et al. (2014). Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp Biol Med 239, 1135-1169. doi:10.1177/1535370214536679

OECD (2017). Revised Guidance Document on Developing and Assessing Adverse Outcome Pathways. 2nd edition. Series on Testing and Assessment, No. 184.

Pamies, D., Leist, M., Coecke, S. et al. (2022). Guidance document on good cell and tissue culture practice 2.0 (GCCP 2.0). ALTEX 39, 30-70. doi:10.14573/altex.2111011

Polk, W. W., Sharma, M., Sayes, C. M. et al. (2016). Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface. Part Fibre Toxicol 13, 20. doi:10.1186/s12989-016-0131-y

Ramanarayanan, T., Szarka, A., Flack, S. et al. (2022). Application of a new approach method (NAM) for inhalation risk assessment. Regul Toxicol Pharmacol 133, 105216. doi:10.1016/j.yrtph.2022.105216

Ren, B., Wu, Q., Muskhelishvili, L. et al. (2022). Evaluating the sub-acute toxicity of formaldehyde fumes in an in vitro human airway epithelial tissue model. Int J Mol Sc 23, 2593. doi:10.3390/ijms23052593

Rothen-Rutishauser, B., Gibb, M., He, R. et al. (2023). Human lung cell models to study aerosol delivery – Considerations for model design and development. Eur J Pharm Sci 180, 106337. doi:10.1016/j.ejps.2022.106337

Sayes, C. M. and Singal, M. (2021). The link between delivered aerosol dose and inflammatory responses: Exposing a lung cell co-culture system to selected allergens and irritants. J Aerosol Sci 151, 105677. doi:10.1016/j.jaerosci.2020.105677

Schmid, O. and Cassee, F. R. (2017). On the pivotal role of dose for particle toxicology and risk assessment: Exposure is a poor surrogate for delivered dose. Part Fibre Toxicol 14, 52. doi:10.1186/s12989-017-0233-1

Schmid, O., Jud, C., Umehara, Y. et al. (2017). Biokinetics of aerosolized liposomal ciclosporin a in human lung cells in vitro using an air-liquid cell interface exposure system. J Aerosol Med Pulmon Drug Deliv 30, 411-424. doi:10.1089/jamp.2016.1361

Silva, S., Bicker, J., Falcão, A. et al. (2023). Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm 184, 62-82. doi:10.1016/j.ejpb.2023.01.013

Steimer, A., Haltner, E. and Lehr, C. M. (2005). Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 18, 137-182. doi:10.1089/jam.2005.18.137

Stoehr, L. C., Endes, C., Radauer-Preiml, I. et al. (2015). Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions. Part Fibre Toxicol 12, 29. doi:10.1186/s12989-015-0104-6

Stokes, A. B., Kieninger, E., Schogler, A. et al. (2014). Comparison of three different brushing techniques to isolate and culture primary nasal epithelial cells from human subjects. Exp Lung Res 40, 327-332. doi:10.3109/01902148.2014.925987

Svensson, C. R., Ameer, S. S., Ludvigsson, L. et al. (2016). Validation of an air-liquid interface toxicological set-up using Cu, Pd, and Ag well-characterized nanostructured aggregates and spheres. J Nanopart Res 18, 86. doi:10.1007/s11051-016-3389-y

ten Berge, W. F., Zwart, A. and Appelman, L. M. (1986). Concentration – Time mortality response relationship of irritant and systemically acting vapours and gases. J Hazard Mat 13, 301-309. doi:10.1016/0304-3894(86)85003-8

Thimraj, T. A., Sompa, S. I., Ganguly, K. et al. (2019). Evaluation of diacetyl mediated pulmonary effects in physiologically relevant air-liquid interface models of human primary bronchial epithelial cells. Toxicol In Vitro 61, 104617. doi:10.1016/j.tiv.2019.104617

Tilly, T. B., Nelson, M. T., Chakravarthy, K. B. et al. (2020). In vitro aerosol exposure to nanomaterials: From laboratory to environmental field toxicity testing. Chem Res Toxicol 33, 1179-1194. doi:10.1021/acs.chemrestox.9b00237

Verstraelen, S., Jacobs, A., Van Laer, J. et al. (2021). An in vitro air-liquid interface inhalation platform for petroleum substances and constituents. ALTEX 38, 550-564. doi:10.14573/altex.2010211

Wang, R., Chen, R., Wang, Y. et al. (2019). Complex to simple: In vitro exposure of particulate matter simulated at the air-liquid interface discloses the health impacts of major air pollutants. Chemosphere 223, 263-274. doi:10.1016/j.chemosphere.2019.02.022

Wang, Y., Wu, Q., Muskhelishvili, L. et al. (2021). Toxicity of ortho-phthalaldehyde aerosols in a human in vitro airway tissue model. Chem Res Toxicol 34, 754-766. doi:10.1021/acs.chemrestox.0c00379

Welch, J., Wallace, J., Lansley, A. B. et al. (2021). Evaluation of the toxicity of sodium dodecyl sulphate (SDS) in the MucilAir™ human airway model in vitro. Regul Toxicol Pharmacol 125, 105022. doi:10.1016/j.yrtph.2021.105022

Willoughby, J. A. (2015). Predicting respiratory toxicity using a human 3D airway (EpiAirway™) model combined with multiple parametric analysis. Appl In Vitro Toxicol 1, 55-65. doi:10.1089/aivt.2014.0003

Zhang, L., Wang, C., Xian, M. et al. (2020). Particulate matter 2.5 causes deficiency in barrier integrity in human nasal epithelial cells. Allergy Asthma Immunol Res 12, 56-71. doi:10.4168/aair.2020.12.1.56

Most read articles by the same author(s)